Gaia observations of naked-eye stars: status update
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Gaia’s bright limit Very bright star science cases
Schematic Detection Astrometric Photometry | Radial velocity || Very bright stars with magnitudes G<6, i.e. the ~6000 stars observable with
representation of 2 _ andFoOv measurements (dispersed | (dispersed the naked eye, are among the best studied astronomical objects. Securing Gaia
discrimination images) | images) ] ) ) o X ]
out of 7 CCD I 5 oo o data for those stars is a unique science opportunity, in particular in what
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gl ;TaEZeS(::;: AC 5 5|< < << << < <|>d ¥ |FRE concerns astrometry because no other current or planned observatory can
move from left to obtain global astrometry at sub-milliarcsecond level of this stellar sample.
right as the AL . Science cases include but are not limited to: | s e warswine <57.ena > 53 mas | )
spacecraft spins. 1200 Very bright star spectral

1000 types and distances

The SkyMapper CCDs (SM| and SM2) identify the the star-like sources that o Earallaxes and Pr,OPeL mc;tions:lpout 10
Gaia will observe. Data of stars not identified in the SkyMapper are not tlmeanl;l(?I‘E preC|s.et an ro:w 'PPArcos,
downlinked, thus are lost. The original Gaia bright limit of G=6 was improved €. Of bright massive stars that are

to G=3 by tuning the onboard parameters of the SkyMapper star detection fundan;]enFaI anchor points for stellar
algorithm (Martin-Fleitas et al 2014, Sahlmann et al. 2016). astrophysics.
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& Orbit constraints for very bright binary
stars (at least 25% of the sample).

10! | 4877 HIP stars with G < 5..7i Very bright star
| el | parallax uncer-
2 | tainties from

| Hipparcos.
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& Discover new exoplanets, in particular
HIP 12387 (B2, V=4.07)

0| . -
{ﬁh The probability that Gaia will B T I I around very bright A and F stars.

20 naturally observe a very bright Gaia Radial Velocity S (RVS)
star decreases rapidly at G<3. ala Radial Velocity spectrometer
ol T T 2 spectrum of the very bright B2 star HIP 12387 || & Accurate masses of known exoplanets

Gmag (V = 4.1) from nominal observations. discovered b)’ radial velocity monitoring,
see the example below: G mag
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For the 230 stars brighter than G=3, we are pursuing two solutions in order
to observe them as well:
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Parallax and proper | The astrometric orbit of GJ676A caused by planet b from
motion of GJ676A | FORS2/VLT astrometry and HARPS-S radial velocities
(17 pc away) (Sahlmann et al. 2016). The planet’s true mass is ~6.7
Jupiter masses. Gaia naked-eye star observations can
make similar work possible for tens of known exoplanets.

Forced SkyMapper Imaging: The first consists of forcing the acquisition of
full-frame SkyMapper images and has been in operation since the beginning of
Gaia’s nominal mission.

Offset in Declination (mas)

1.5
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Virtual Object Synchronisation: The second method uses Virtual Objects 15 e T e e g
whose associated CCD windows are placed at defined locations. They usually 10| s
fall on ‘empty’ regions of the sky and, for instance, serve to estimate the sky L o9 orbic it = "
background. The idea of Virtual Object synchronised observations is to s 0  —N o 72
. . . . © _ost - @ —1.0f
pre.cllct the focal plane crossing of a very bright star and to place a Virtual | ) 1 Orbital motion T ¢
Object window on top of it. The method has been successfully tested and its 'L apparent in the residuals -5 )
implementation for the brightest 50 stars (G<1.75) is under study. o0 0 T e o —2.05 5 0'_55ah(|;[2an_ngf5t il‘l_oofs

Offset in Right Ascension (mas)

Forced SkyMapper Imaging Virtual Object Synchronisation

~24”x| i 2.8 S exposure

Because Gaia is constantly spinning and precessing, this method relies on
accurate temporal (~9 ms) and spatial (~1”’) predictions of very bright star
passages in the Gaia focal plane.

At every predicted passage of a very bright
star, Gaia records 5 seconds of SkyMapper
full-frame data. The PSF core saturates
(white pixels) and a nominal model
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(contours) does not reproduce the high g - se su
spatial frequencies, but the images (~5'x6’) ¢ r . _! I R L |- " |-
contain plenty of astrometric information. *
These data are non-nominal and treated ” m ”
with an off-line pipeline (Sahlmann et al. ]
2016, Gaia Collaboration 201 6) y ~ oo ~50 Jorgsc o . 50 100 Ten windows with ver;bright star images that were collected u:ing virtualmobiect Syr:::hronisatipgn.
Advantages: This is a non-invasive, well-tested method with negligible increase o . | Prediction error
in telemetry. It is in operation since October 2014. These prediction capabilities were demonstrated in A
Disadvantages: Only SkyMapper data are collected, which have a fixed several tests reaching ~70% success rates (capture of .., ! f[ |
integration time (CCD gating) and are undersampled by a factor of two the stellar core), see blue histogram. Using improved -
(~0.11”x 0.35” sample size) compared to the astrometric field CCD data. The prediction models we aim at >90% success rate. CEI | L
more powerful solution of virtual object synchronisation can mitigate this. Advantages: This method gives access to Ty

35 ‘ ‘ T T ‘ ‘ ‘ ‘ ‘ SkyMapper, astrometric field, and spectro- |

ol Number of bright star events per day. On average 10 images | are collected every day. photometric data of extremely bl"ight stars. - : : !
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Conclusions
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There is no bright limit for Gaia astrometric observations, however core
saturation poses challenges both for naturally detected stars (G<6) and in the
o w” forced SkyMapper images.Virtual object synchronisation may mitigate some of
= | | those problems for the 50 stars brighter than G=1.75.
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In addition to very bright stars, the technique
of forced SkyMapper imaging is also applied
to capture images of extremely dense fields

(to mitigate effects of crowding) and of
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events when stars are observed close to
C , e of data from the ESA space mission Gaia, processed by the Gaia Data Processing and Analysis
JUPIterS ||mb (fOI’ scene reconnalssance). 1000 2000 3000 4000 5000 Consortium (DPAC).
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