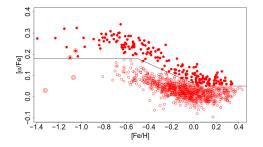
The Thick Thin Disk and the Thin Thick Disk: a New Paradigm from *Gaia*

Michael Hayden

Alejandra Recio-Blanco, Patrick de Laverny, Sarunas Mikolaitis, Guillaume Guiglion, Anastasia Titarenko

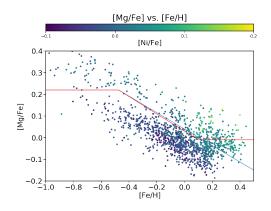

Observatoire de la Cote d'Azur

April 25, 2017

Overview

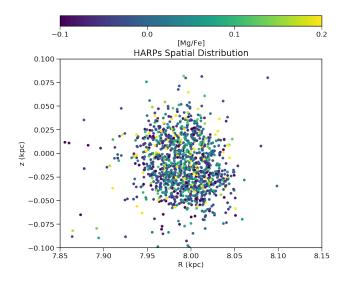
- The Structure of the Milky Way Disk
- The Gaia HARPs Sample
- Ages
- Gaia Kinematics

The Solar Neighborhood

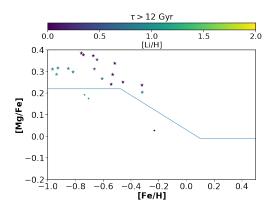

Adebekyan 2012+, Haywood 2013+

- High- α metal-poor stars identified as thick disk
- Solar-α stars: thinner disk
- Intermediate- α has two populations
- Split disk into thin, thick based on α, metallicity

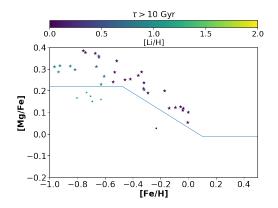
AMBRE


- Tens of thousands of high-res archival ESO spectra
- HARPs, UVES, Feros Instruments
- Uniform parameter determination from Matisse
- Individual abundances derived in Mikolaitis+2016
- Cross-match with Gaia: Not Trivial
- Many stars aren't in DR1: develop tools to use for future releases!

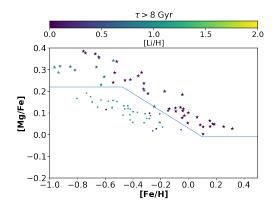
The HARPs Sample


The HARPs Gaia Sample

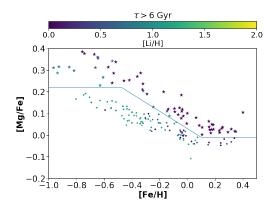
- High-resolution spectra of $\sim 1,500$ stars with *Gaia* Overlap
- Local, within 200 pc
- Mainly G, F dwarfs & Subgiants
- Stellar Parameters from Matisse, Abundances from Mikolaitis+ 2016
- dispersion < 0.05 dex in [Mg/Fe]
- Split into thin, thick disk by eye based on red line


The HARPs Gaia Sample

$\left[\text{Mg}/\text{Fe}\right]$ vs. $\left[\text{Fe}/\text{H}\right]$ by Age

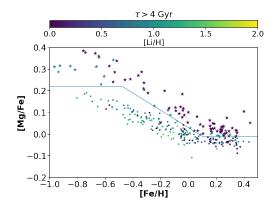

- From HARPs sample, select MSTO/Subgiant stars, ~ 550 stars
- Ages reliable for these stars, primarily function of $T_{\rm eff}$
- Measure kinematic properties for all stars
- Oldest stars are high-α, lower-metallicity

$\left[\text{Mg}/\text{Fe}\right]$ vs. $\left[\text{Fe}/\text{H}\right]$ by Age

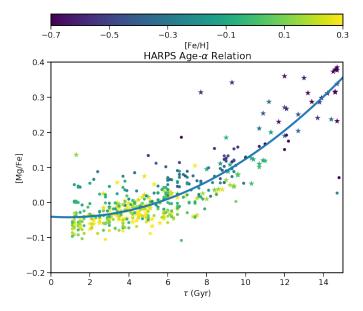

- Stars mostly high- α sequence
- The "thick disk" stars α has decreased ~ 0.2 dex, up to solar metallicity
- A few of the oldest "thin disk" stars appear

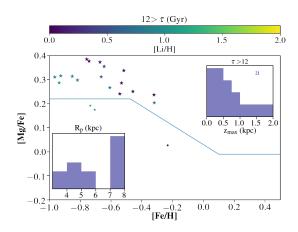
$\left[\text{Mg}/\text{Fe}\right]$ vs. $\left[\text{Fe}/\text{H}\right]$ by Age

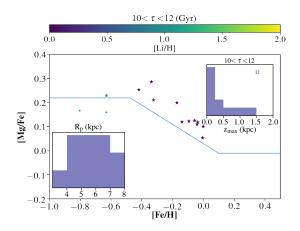
- Thick-disk is at super-solar metallicities, clearly has extended star formation
- Thin, thick disk tracks have same age, same physical position, but metallicities different by more than 0.5 dex
- Need some form of radial mixing to explain observations


 $\left[Mg/Fe\right]$ vs. $\left[Fe/H\right]$ by Age

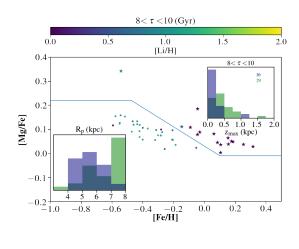
- More of "thin"-disk chemical track stars appear
- Thick-disk track at solar- α ,

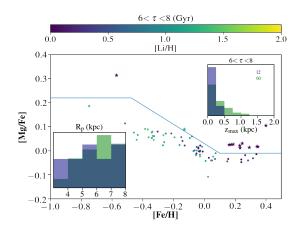

high-metallicity

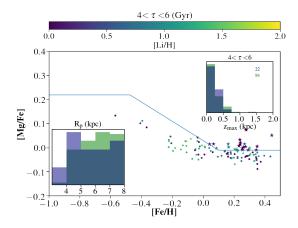

$\left[Mg/Fe\right]$ vs. $\left[Fe/H\right]$ by Age

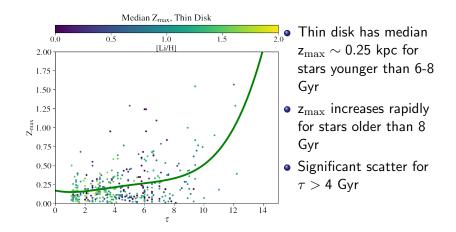

 Unclear which track stars belong to at metal-rich end, could be "thin" or "thick" disk track

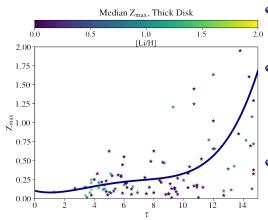
Age- α Relation

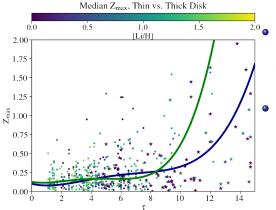


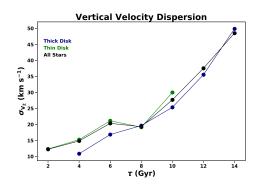

- Using Gaia proper motions, parallax compute kinematics, orbits
- Compare orbital properties for thin, thick disk track as function of age
- Oldest stars have large scale-heights, come from inner Galaxy


- Still many thick disk stars with large z_{max}, but bulk of thick disk stars confined to the plane
- Not many thin disk stars at these ages

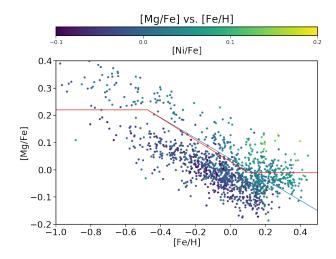



- Chemical thick disk predominately in plane, $z_{\rm max<0.5}$ kpc for almost all stars
- "thin" disk has many stars at large maximum distances from plane
- Chemical "thin" disk thicker than chemical "thick" disk for stars with $8 < \tau < 10$ Gyr

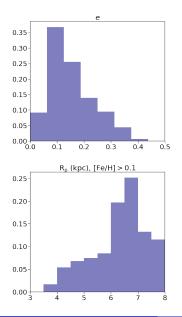

- Similar to previous age bracket, but bulk of both populations close to midplane
- Chemical "thin" disk is again more vertically extended than chemical "thick" disk



- Thick disk population in general older than thin disk
- Similar z_{max} distribution as thin disk, but shifted to slightly older τ for same z_{max}
 - z_{max} increases rpaidly for stars older than 10 Gyr

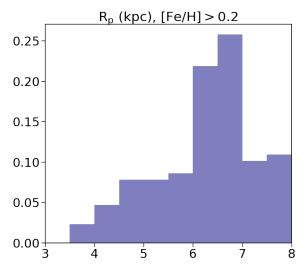

 Thick disk has, on average, similar z_{max} than thin disk at same age!

> Chemical definition of thin, thick disk ambiguous, confusing!



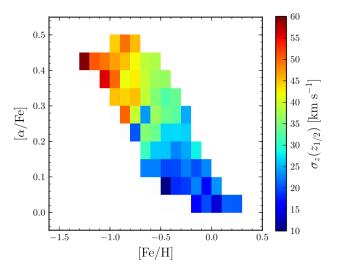
- σ_{V_z} lower for thick disk than thin disk at same age
- Chemical definition of thin, thick disk ambiguous, confusing
- Thin, thick disk terms should be reserved for geometric disk
- Clearly two primary chemical evolution sequences
- New definition: Inner Galaxy, Outer Galaxy

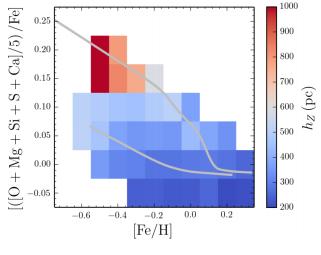
Metal-rich Populations: Migration



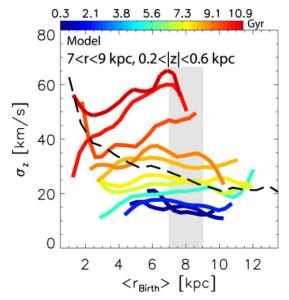
Metal-rich Populations: Migration

- Select stars with [Fe/H]> 0.1 (i.e. those that didn't form in solar neighborhood!)
- More than half of metal-rich stars have eccentricities < 0.2, R_P > 6 kpc likely migrated!
- >1/4 of metal-rich stars have perigalacticons> 7 kpc
- $R_{\rm P}$ distribution similar no matter the definition of "metal-rich"


Migration


Michael Hayden (OCA)

Summary


- Derived ages, kinematics for sample of HARPs stars, can be applied to larger data sets!
- Chemical thick disk has extended star formation history, potentially up to present day
- The chemically defined thick disk has a similar scale height than chemically defined thin disk for same age
- Chemical separation of thin-thick disk misleading: need new definition
- Inner Galaxy vs. Outer Galaxy
- Radial Mixing: more than half of metal-rich stars on circular orbits+large perigalictons, migration important for these populations

Bovy+2012

Bovy+2016

Michael Hayden (OCA)

A New Paradigm of the Galaxy