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& Itis common to think of the distance scale in terms of
“reaching out” from the Galaxy.
Let’s think of it in terms of backward design.
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The Hubble Diagram
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FIGURE 1 ’
Velocity-Distance Relation among Extra-Galactic Nebulae.

H, is the proportionality constant between distance (x-axis) and redshift (y-axis).




The Hubble Diagram

Almost a century later ...

40 | T l T
‘ CSP - Hubble Flow Sample
38 |- @ 'local’ SNe Ia Sample SNe Ia Hubble
36 | @ CfA4 - low-z Sample Flow
34 | - B
S O SNela = 0.15 mag
g 32 - (UDd with 221 SNe Ia
= )
30 0 18
. : - 0.7 % uncertainty
28 |- 1,
26 - 18
5N
| | | | |

-3.5 -3.0 -2.5 -2.0 -1.5

10g10(szB)

H, is measured in the smooth Hubble Flow where over 200 SNe Ia are well-characterized.




The Hubble Diagram

Almost a century later ...
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The best we can do with current local sample is 2.1% uncertainty regardless of how we calibrate the SNe Ia.




In the (recent) past this was okay:
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But, today it is not:
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Even an 0.05 mag uncertainty (2.5%) is a detail to worry about.
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But, today it is not:
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Why so few SNe Ia Calibrators?
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It is just not for a ‘lack” of SNe Ia in the ‘Local Volume”  #as of March 2016.



No of SN Ia

Why so few SNe [a Calibrators?

141 SN Ia w1thm ~4O Mpc [NED D1stance] T _—
[ Ngy= 95 ]

-- :

O L L L L | 1 L L L | L L L L | L L L L | L L L L

1995 2000 2005 2010 2015 2020
Discovery Year

It is just not for a ‘lack’ of SNe Ia in the ‘Local Volume’ +*As of March 2016,



No of SN Ia

14

12

10

(o)

Qo
rrrrrrr[rrrr[rrr[rrr[rrr [T

&

NGC 5643

‘Carnegte-Trvine Galaxy Burvey
Ho et al: 2011

Why so few SNe Ia Calibrators’?\

SN Ia within ~40 Mpc [NED Distance]
NSN la = 95

| 8w 2017¢bv

Magnitude + Offset

2000

2005 2010
Discovery Year

2015

[ SN2017cbv | |

[ BgvriIll uBgVrilIYJH

)
°
° %o

SN 2013aa

Carnegie
Supernova
Project -

®0p

® 0o

8 88888

2020

20 -20 0 20 40 60
Time Since Maximum Light (days)

80 100

Shappee (incl. Beaton) et al. (in prep.)




SNe Ia Suitability

(1) Can I characterize the SNe? (2) Can I measure its distance?




SNe Ia Suitability

(1) Can I characterize the SNe? (2) Can I measure its distance?

Did I find it before peak light?

Can I remove the galaxy and/or nearby bright sources?
Do I have quality, multi-band light curves for 30+ days?
Can I estimate local extinction?

... and related issues.




SNe Ia Suitability

(1) Can I characterize the SNe? (2) Can I measure its distance?
YES! (most of the time)

Did I find it before peak light?

Can I remove the galaxy and/or nearby bright sources?
Do I have quality, multi-band light curves for 30+ days?
Can I estimate local extinction?

... and related issues.




SNe Ia Suitability

(1) Can I characterize the SNe? (2) Can I measure its distance?
YES! (most of the time) With Cepheids?

Did I find it before peak light?

Can I remove the galaxy and/or nearby bright sources?
* Do Ihave quality, multi-band light curves for 30+ days?
*  Can I estimate local extinction?

... and related issues.




SNe Ia Suitability

(1) Can I characterize the SNe? (2) Can I measure its distance?
YES! (most of the time) With Cepheids?
« Did I'find it before peak light? « Is the Host Galaxy:
*  CanIremove the galaxy and/or nearby bright sources? «  Star forming?
* Do Ihave quality, multi-band light curves for 30+ days? ¢ Luminous?
*  Can I estimate local extinction? *  Approx. Face on?

... and related issues.




SNe Ia Suitability

(1) Can I characterize the SNe?

YES! (most of the time)

(2) Can I measure its distance?
With Cepheids?

Did I find it before peak light?

Can I remove the galaxy and/or nearby bright sources?
Do I have quality, multi-band light curves for 30+ days?
Can I estimate local extinction?

... and related issues.

+  Is the Host Galaxy:
«  Star forming?
¢ Luminous?
*  Approx. Face on?

* If YES to all of the above, do I have:

*  10-20 epochs of optical imaging to find the
Cepheids and determine periods?

* Do my Cepheids span a range of log(P)?

*  Is there spatially resolved metallicity
information?

»  Can I measure local extinction?

*  Crowding?

* ... and related issues.



SNe Ia Suitability

(1) Can I characterize the SNe?

YES! (most of the time)

(2) Can I measure its distance?
With Cepheids? MAYBE?

Did I find it before peak light?

Can I remove the galaxy and/or nearby bright sources?
Do I have quality, multi-band light curves for 30+ days?
Can I estimate local extinction?

... and related issues.

+  Is the Host Galaxy:
«  Star forming?
¢ Luminous?
*  Approx. Face on?

* If YES to all of the above, do I have:

*  10-20 epochs of optical imaging to find the
Cepheids and determine periods?

* Do my Cepheids span a range of log(P)?

*  Is there spatially resolved metallicity
information?

»  Can I measure local extinction?

*  Crowding?

* ... and related issues.



SNe Ia Suitability

(1) Can I characterize the SNe?
YES! (most of the time)

(2) Can I measure its distance?
With Cepheids? MAYBE?

Did I find it befc
Can I remove th
Do I have qualit
Can I estimate I¢
... and related is

nd the

(P)?



With Gaia, more tools.
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Cephelds
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Tip of the Red Giant Branch \

IC 1613 - Local Group Dwarf Irregular
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Tip of the Red Giant Branch

PROs CONs

Not variable. * No 100 year legacy.
Well understood physics. * Every SNe Ia host must be measured
Can be applied to: for the first time.

« ALL Hubble Types *  Great non-uniformity of application in the

* ALL inclinations literature

* ALL luminosity classes * Develop techniques applicable over
Apply to low-density regions of galaxies. 20 mag in distance modulus.
Few differences between local stars and * No direct trigonometric calibration.
distant stars. » Collect the ancillary data to use Gaia
Metallicity effects projected into color axis. parallaxes
Single dataset to find and characterize
Red candle =» make use of future IR
facilities.




1. Build a Sample of SNe Ia \

The CCHP Pathways to a 3% Determination of the Hubble Constant
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2. Standardized Techniques
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2. Standardized Techniques
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Direct Calibrati
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Beaton, Monson et al. (in prep.)
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3. Direct Calibration
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Pop I & 1I: Consistency
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NIR: JWST & WFIRST
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Conclusions

Path to 1% H, requires standard candles that provide
access to high no. of SNe Ia.

— TRGB has numerous advantages toward this goal.

Scale and volume probed by Gaia makes secondary
distance indicators primary distance indicators.

So far, Ce{)heid, RR Lyrae, and TRGB distances are
remarkably consistent.

— More tests on-going in 6 Local Group galaxies and 9 SNe
Ia hosts.

TRGB in NIR could permit every SNe Ia within 40
Mpc to have a < 5% distance.



To Close: \

It’s got to be fun, I don’t think anybody
should tell you that he’s slogged his .' Allan Sandage
way through 25 years on a problem and Re: 1926-2010
there’s only one reward at the end, and & 4
that’s the value of the Hubble constant.

That’s a bunch of hooey.

The reward is learning all the
wonderful properties of the things that
don’t work.

From Obituary in NYTimes by D. Overbye Sandage, Beaton & Majewski 2016




