The Extragalactic Distance Scale in the Gaia Era

Rachael L. Beaton
Carnegie Observatories
(Fall 2017 - @Princeton)
It is common to think of the distance scale in terms of “reaching out” from the Galaxy. Let’s think of it in terms of backward design.
The Hubble Diagram

H_0 is the proportionality constant between distance (x-axis) and redshift (y-axis).
H_0 is measured in the smooth Hubble Flow where over 200 SNe Ia are well-characterized.

Almost a century later …

$\sigma_{\text{SNe Ia}} = 0.15$ mag with 221 SNe Ia

0.7 % uncertainty
The best we can do with current local sample is 2.1% uncertainty regardless of how we calibrate the SNe Ia.
In the (recent) past this was okay:

The large uncertainties from the other terms that set the Cepheid scale were much larger than the 2% from the SNe Ia.
But, today it is not:

Even an 0.05 mag uncertainty (2.5%) is a detail to worry about.
But, today it is not:

Even an 0.05 mag uncertainty (2.5%) is a detail to worry about.

Beaton et al. 2016

Even an 0.05 mag uncertainty (2.5%) is a detail to worry about.
But, today it is not:

Even an 0.05 mag uncertainty (2.5%) is a detail to worry about.

Beaton et al. 2016

Most recent determinations differ by 3.4σ (i.e., 96% percentile).

Not good.

Freedman et al. 2016
HST Key Project

10%

Riess et al. 2016

2.4%

Planck Collaboration 2016

1.6%

Even an 0.05 mag uncertainty (2.5%) is a detail to worry about.
Why so few SNe Ia Calibrators?

It is just not for a ‘lack’ of SNe Ia in the ‘Local Volume’

As of March 2016.
Why so few SNe Ia Calibrators?

It is just not for a ‘lack’ of SNe Ia in the ‘Local Volume’

As of March 2016.
Why so few SNe Ia Calibrators?

Shappee (incl. Beaton) et al. (in prep.)
SNe Ia Suitability

<table>
<thead>
<tr>
<th>(1) Can I characterize the SNe?</th>
<th>(2) Can I measure its distance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) Is the Host Galaxy:</td>
<td></td>
</tr>
<tr>
<td>- Star forming?</td>
<td></td>
</tr>
<tr>
<td>- Luminous?</td>
<td></td>
</tr>
<tr>
<td>- Approx. Face on?</td>
<td></td>
</tr>
<tr>
<td>If YES to all of the above, do I have:</td>
<td></td>
</tr>
<tr>
<td>- 10-20 epochs of optical imaging to find the Cepheids and determine periods?</td>
<td></td>
</tr>
<tr>
<td>- Do my Cepheids span a range of log(P)?</td>
<td></td>
</tr>
<tr>
<td>- Is there spatially resolved metallicity information?</td>
<td></td>
</tr>
<tr>
<td>- Can I measure local extinction?</td>
<td></td>
</tr>
<tr>
<td>- Crowding?</td>
<td></td>
</tr>
<tr>
<td>... and related issues.</td>
<td></td>
</tr>
</tbody>
</table>
SNe Ia Suitability

<table>
<thead>
<tr>
<th>(1) Can I characterize the SNe?</th>
<th>(2) Can I measure its distance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did I find it before peak light?</td>
<td></td>
</tr>
<tr>
<td>Can I remove the galaxy and/or nearby bright sources?</td>
<td></td>
</tr>
<tr>
<td>Do I have quality, multi-band light curves for 30+ days?</td>
<td></td>
</tr>
<tr>
<td>Can I estimate local extinction?</td>
<td></td>
</tr>
<tr>
<td>… and related issues.</td>
<td></td>
</tr>
</tbody>
</table>

- Star forming?
- Luminous?
- Approx. Face on?
- If YES to all of the above, do I have:
 - 10-20 epochs of optical imaging to find the Cepheids and determine periods?
 - Do my Cepheids span a range of log(P)?
 - Is there spatially resolved metallicity information?
 - Can I measure local extinction?
 - Crowding?
 - … and related issues.
SNe Ia Suitability

(1) Can I characterize the SNe?

YES! (most of the time)

- Did I find it before peak light?
- Can I remove the galaxy and/or nearby bright sources?
- Do I have quality, multi-band light curves for 30+ days?
- Can I estimate local extinction?
- … and related issues.

(2) Can I measure its distance?

Thanks to a phenomenal effort from the SNe/transient communities 40 SNe Ia within 40 Mpc have this data (~50%).

Chris Burns (CSP) & Ben Shappee (ASAS-SN)
SNe Ia Suitability

1. **Can I characterize the SNe?**
 - YES! *(most of the time)*
 - Did I find it before peak light?
 - Can I remove the galaxy and/or nearby bright sources?
 - Do I have quality, multi-band light curves for 30+ days?
 - Can I estimate local extinction?
 - … and related issues.

2. **Can I measure its distance?**
 - With Cepheids?
 - 10-20 epochs of optical imaging to find the Cepheids and determine periods?
 - Do my Cepheids span a range of log(P)?
 - Is there spatially resolved metallicity information?
 - Can I measure local extinction?
 - Crowding?
 - … and related issues.

Thanks to a phenomenal effort from the SNe/transient communities, 40 SNe Ia within 40 Mpc have this data (~50%).

Chris Burns (CSP) & Ben Shappee (ASAS-SN)
SNe Ia Suitability

(1) Can I characterize the SNe?

YES! (most of the time)

- Did I find it before peak light?
- Can I remove the galaxy and/or nearby bright sources?
- Do I have quality, multi-band light curves for 30+ days?
- Can I estimate local extinction?
- … and related issues.

(2) Can I measure its distance?

With Cepheids?

- Is the Host Galaxy:
 - Star forming?
 - Luminous?
 - Approx. Face on?

Thanks to a phenomenal effort from the SNe/transient communities 40 SNe Ia within 40 Mpc have this data (~50%).

Chris Burns (CSP) & Ben Shappee (ASAS-SN)
SNe Ia Suitability

(1) Can I characterize the SNe?

YES! (most of the time)

- Did I find it before peak light?
- Can I remove the galaxy and/or nearby bright sources?
- Do I have quality, multi-band light curves for 30+ days?
- Can I estimate local extinction?
- … and related issues.

(2) Can I measure its distance?

With Cepheids?

- Is the Host Galaxy:
 - Star forming?
 - Luminous?
 - Approx. Face on?

- If YES to all of the above, do I have:
 - 10-20 epochs of optical imaging to find the Cepheids and determine periods?
 - Do my Cepheids span a range of log(P)?
 - Is there spatially resolved metallicity information?
 - Can I measure local extinction?
 - Crowding?
 - … and related issues.

Thanks to a phenomenal effort from the SNe/transient communities 40 SNe Ia within 40 Mpc have this data (~50%).

Chris Burns (CSP) & Ben Shappee (ASAS-SN)
SNe Ia Suitability

(1) Can I characterize the SNe?

YES! (most of the time)

- Did I find it before peak light?
- Can I remove the galaxy and/or nearby bright sources?
- Do I have quality, multi-band light curves for 30+ days?
- Can I estimate local extinction?
- ... and related issues.

(2) Can I measure its distance?

With Cepheids? MAYBE?

- Is the Host Galaxy:
 - Star forming?
 - Luminous?
 - Approx. Face on?

- If YES to all of the above, do I have:
 - 10-20 epochs of optical imaging to find the Cepheids and determine periods?
 - Do my Cepheids span a range of log(P)?
 - Is there spatially resolved metallicity information?
 - Can I measure local extinction?
 - Crowding?
 - ... and related issues.

Thanks to a phenomenal effort from the SNe/transient communities 40 SNe Ia within 40 Mpc have this data (~50%).

Chris Burns (CSP) & Ben Shappee (ASAS-SN)

and herein lies the limitation.
SNe Ia Suitability

<table>
<thead>
<tr>
<th>(1) Can I characterize the SNe?</th>
<th>(2) Can I measure its distance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES! (most of the time)</td>
<td>With Cepheids? MAYBE?</td>
</tr>
</tbody>
</table>

- Did I find it before peak light?
- Can I remove the galaxy and/or nearby bright sources?
- Do I have quality, multi-band light curves for 30+ days?
- Can I estimate local extinction?
- ... and related issues.

Cepheids are amazing tools, but their applicability to the SNe Ia host population is limited.

The data needed to find, characterize, and use the Leavitt law is expensive, relies on numerous ground and space facilities, and multiple techniques.

Thanks to a phenomenal effort from the SNe/transient communities, 40 SNe Ia within 40 Mpc have this data (~50%).

“Chris Burns (CSP) & Ben Shappee (ASAS-SN)

and herein lies the limitation.
With Gaia, more tools.
With Gaia, more tools.

Too faint for distances to SNe Ia hosts.
With Gaia, more tools.

Cepheids:
- < 400 Myr
- Range [Fe/H]
- Galaxy Disks
- variable

Too faint for distances to SNe Ia hosts.
With Gaia, more tools.

Cepheids:
- < 400 Myr
- Range $[\text{Fe/H}]$
- Galaxy Disks
- variable

RR Lyrae:
- $> \text{few Gyr}$
- Mostly metal-poor
- Disk, bulge, halo
- variable

Too faint for distances to SNe Ia hosts.
With Gaia, more tools.

Cepheids:
- < 400 Myr
- Range [Fe/H]
- Galaxy Disks
- variable

RR Lyrae:
- > few Gyr
- Mostly metal-poor
- Disk, bulge, halo
- variable

TRGB:
- > few Gyr
- Mostly metal-poor
- Disk, bulge, halo
- Not variable

Too faint for distances to SNe Ia hosts.
Tip of the Red Giant Branch

IC 1613 – Local Group Dwarf Irregular

Optical: Hatt, Beaton et al. (submitted)
NIR: Madore (incl. Beaton) et al. (in prep.)
Tip of the Red Giant Branch

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tip of the Red Giant Branch

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Not variable.</td>
<td></td>
</tr>
<tr>
<td>• Well understood physics.</td>
<td></td>
</tr>
</tbody>
</table>

- Apply to low-density regions of galaxies.
- Few differences between local stars and distant stars.
- Metallicity effects projected into color axis.
- Single dataset to find and characterize red candle.
Tip of the Red Giant Branch

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not variable.</td>
<td></td>
</tr>
<tr>
<td>Well understood physics.</td>
<td></td>
</tr>
<tr>
<td>Can be applied to:</td>
<td></td>
</tr>
<tr>
<td>• ALL Hubble Types</td>
<td></td>
</tr>
<tr>
<td>• ALL inclinations</td>
<td></td>
</tr>
<tr>
<td>• ALL luminosity classes</td>
<td></td>
</tr>
<tr>
<td>Apply to low-density regions of galaxies.</td>
<td></td>
</tr>
<tr>
<td>Few differences between local stars and distant stars.</td>
<td></td>
</tr>
<tr>
<td>Metallicity effects projected into color axis.</td>
<td></td>
</tr>
<tr>
<td>Single dataset to find and characterize</td>
<td></td>
</tr>
<tr>
<td>Red candle</td>
<td>make use of future IR facilities.</td>
</tr>
</tbody>
</table>
Tip of the Red Giant Branch

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not variable.</td>
<td></td>
</tr>
<tr>
<td>Well understood physics.</td>
<td></td>
</tr>
<tr>
<td>Can be applied to:</td>
<td></td>
</tr>
<tr>
<td>• ALL Hubble Types</td>
<td></td>
</tr>
<tr>
<td>• ALL inclinations</td>
<td></td>
</tr>
<tr>
<td>• ALL luminosity classes</td>
<td></td>
</tr>
<tr>
<td>Apply to low-density regions of galaxies.</td>
<td></td>
</tr>
<tr>
<td>Few differences between local stars and</td>
<td></td>
</tr>
<tr>
<td>distant stars.</td>
<td></td>
</tr>
<tr>
<td>Metallicity effects projected into color</td>
<td></td>
</tr>
<tr>
<td>axis.</td>
<td></td>
</tr>
<tr>
<td>Single dataset to find and characterize</td>
<td></td>
</tr>
<tr>
<td>Red candle</td>
<td></td>
</tr>
<tr>
<td>make use of future IR facilities</td>
<td></td>
</tr>
</tbody>
</table>
Tip of the Red Giant Branch

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Not variable.</td>
<td>• Metallicity effects projected into color axis.</td>
</tr>
<tr>
<td>• Well understood physics.</td>
<td>• Single dataset to find and characterize</td>
</tr>
<tr>
<td>• Can be applied to:</td>
<td></td>
</tr>
<tr>
<td>• ALL Hubble Types</td>
<td></td>
</tr>
<tr>
<td>• ALL inclinations</td>
<td></td>
</tr>
<tr>
<td>• ALL luminosity classes</td>
<td></td>
</tr>
<tr>
<td>• Apply to low-density regions of galaxies.</td>
<td></td>
</tr>
<tr>
<td>• Few differences between local stars and distant stars.</td>
<td></td>
</tr>
<tr>
<td>• Single dataset to find and characterize</td>
<td></td>
</tr>
</tbody>
</table>
Tip of the Red Giant Branch

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not variable.</td>
<td></td>
</tr>
<tr>
<td>Well understood physics.</td>
<td></td>
</tr>
<tr>
<td>Can be applied to:</td>
<td></td>
</tr>
<tr>
<td>• ALL Hubble Types</td>
<td></td>
</tr>
<tr>
<td>• ALL inclinations</td>
<td></td>
</tr>
<tr>
<td>• ALL luminosity classes</td>
<td></td>
</tr>
<tr>
<td>Apply to low-density regions of galaxies.</td>
<td></td>
</tr>
<tr>
<td>Few differences between local stars and distant stars.</td>
<td></td>
</tr>
<tr>
<td>Metallicity effects projected into color axis.</td>
<td></td>
</tr>
<tr>
<td>Single dataset to find and characterize</td>
<td></td>
</tr>
<tr>
<td>Red candle ➔ make use of future IR facilities.</td>
<td></td>
</tr>
</tbody>
</table>
Tip of the Red Giant Branch

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
</table>
| • Not variable.
 • Well understood physics.
 • Can be applied to:
 • ALL Hubble Types
 • ALL inclinations
 • ALL luminosity classes
 • Apply to low-density regions of galaxies.
 • Few differences between local stars and distant stars.
 • Metallicity effects projected into color axis.
 • Single dataset to find and characterize
 • Red candle ➔ make use of future IR facilities. | • No 100 year legacy.
 • Great non-uniformity of application in the literature
 • No direct trigonometric calibration.
 • Collect the ancillary data to use Gaia parallaxes |
Tip of the Red Giant Branch

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not variable.</td>
<td>No 100 year legacy.</td>
</tr>
<tr>
<td>Well understood physics.</td>
<td>Every SNe Ia host must be measured for the first time.</td>
</tr>
<tr>
<td>Can be applied to:</td>
<td>Great non-uniformity of application in the literature</td>
</tr>
<tr>
<td>• ALL Hubble Types</td>
<td>• Develop techniques applicable over 20 mag in distance modulus.</td>
</tr>
<tr>
<td>• ALL inclinations</td>
<td></td>
</tr>
<tr>
<td>• ALL luminosity classes</td>
<td></td>
</tr>
<tr>
<td>Apply to low-density regions of galaxies.</td>
<td>No direct trigonometric calibration.</td>
</tr>
<tr>
<td>Few differences between local stars and distant stars.</td>
<td>• Collect the ancillary data to use Gaia parallaxes.</td>
</tr>
<tr>
<td>Metallicity effects projected into color axis.</td>
<td></td>
</tr>
<tr>
<td>Single dataset to find and characterize</td>
<td></td>
</tr>
<tr>
<td>Red candle ➔ make use of future IR facilities.</td>
<td></td>
</tr>
</tbody>
</table>
1. Build a Sample of SNe Ia

The CCHP Pathways to a 3% Determination of the Hubble Constant

Beaton et al. 2016
2. Standardized Techniques

NEAR-FIELD

FAR-FIELD

Hatt, Beaton et al. (submitted) ArXiv:1703.06468

Jang, Hatt, Beaton et al. (submitted) ArXiv:1703.10616
2. Standardized Techniques

NEAR-FIELD

IC1613

D = 784 ±17 (stat) ±40 (sys) kpc

Hatt, Beaton et al. (submitted) ArXiv:1703.06468

FAR-FIELD

NGC1365

D = 18.1 ±0.3 (stat) ±0.4 (sys) Mpc

Jang, Hatt, Beaton et al. (submitted) ArXiv:1703.10616
2. Standardized Techniques

Dylan Hatt
PhD Student
Univ. of Chicago

NEAR-FIELD

M31

FAR-FIELD

NGC1316

Hatt, Beaton et al. (in prep.)

Jang, Hatt, Beaton et al. (in prep.)
2. Standardized Techniques

Beaton, Hatt et al. (in prep.)
2. Standardized Techniques

Beaton, Hatt et al. (in prep.)
3. Direct Calibration

Optical photometry from TMMT @ LCO

Instrument + RR Lyrae Campaign in:
Monson, Beaton et al. 2017

Hipparcos
Perryman et al. 1997

Gaia DR1
TGAS Catalog
$\sigma_\pi / \pi < 25\%$

Beaton, Monson et al. (in prep.)
3. Direct Calibration

Monson, Beaton et al. 2017

55 RRL with 10-band Data

10 band PL Relations with TGAS
Pop I & II: Consistency

IC1613

Cepheids

TRGB

RRL

24.2

24.4

NGC1365

Cepheids

Freedman+01

Riess+16

TRGB

31.1 31.2 31.3 31.4 31.5 31.6

Distance Modulus, μ_0

Hatt, Beaton et al. (submitted) ArXiv:1703.06468

Jang, Hatt, Beaton et al. (submitted) ArXiv:1703.10616
NIR: JWST & WFIRST

Adapted from Dalcanton et al. 2011
Conclusions

• Path to 1% H_0 requires standard candles that provide access to high no. of SNe Ia.
 – TRGB has numerous advantages toward this goal.
• Scale and volume probed by Gaia makes secondary distance indicators primary distance indicators.
• So far, Cepheid, RR Lyrae, and TRGB distances are remarkably consistent.
 – More tests on-going in 6 Local Group galaxies and 9 SNe Ia hosts.
• TRGB in NIR could permit every SNe Ia within 40 Mpc to have a < 5% distance.
To Close:

It’s got to be fun, I don’t think anybody should tell you that he’s slogged his way through 25 years on a problem and there’s only one reward at the end, and that’s the value of the Hubble constant.

That’s a bunch of hooey.

The reward is learning all the wonderful properties of the things that don’t work.

From Obituary in NYTimes by D. Overbye

Sandage, Beaton & Majewski 2016