The Extragalactic Distance Scale in the *Gaia* Era

Rachael L. Beaton Carnegie Observatories (Fall 2017 - @Princeton)

Distance Scale

It is common to think of the distance scale in terms of "reaching out" from the Galaxy. Let's think of it in terms of backward design.

In the (recent) past this was okay:

The large uncertainties from the other terms that set the Cepheid scale were much larger than the 2% from the SNe Ia.

uitability
(2) Can I measure its distance?

SNe Ia St	uitability
(1) Can I characterize the SNe?	(2) Can I measure its distance?
 Did I find it before peak light? Can I remove the galaxy and/or nearby bright sources? Do I have quality, multi-band light curves for 30+ days? Can I estimate local extinction? and related issues. 	

SNe Ia S ¹	uitability
(1) Can I characterize the SNe?	(2) Can I measure its distance?
YES! (most of the time)	
 Did I find it before peak light? Can I remove the galaxy and/or nearby bright sources? Do I have quality, multi-band light curves for 30+ days? Can I estimate local extinction? and related issues. 	
Thanks to a phenomenal effort from the SNe/transient communities 40 SNe Ia within 40	
Mpc have this data (~50%).	
**Chris Burns (CSP) & Ben Shappee (ASAS-SN)	

SNe Ia S	uitability
(1) Can I characterize the SNe?	(2) Can I measure its distance?
YES! (most of the time)	With Cepheids?
 Did I find it before peak light? Can I remove the galaxy and/or nearby bright sources? Do I have quality, multi-band light curves for 30+ days? Can I estimate local extinction? and related issues. Thanks to a phenomenal effort	
from the SNe/transient	
Mpc have this data (~50%).	
**Chris Burns (CSP) & Ben Shappee (ASAS-SN)	

SNe Ia St	uitability	
(1) Can I characterize the SNe?	(2) Can I measure its distance?	
1 ES! (most of the time)	with Cepheius?	_
 Did I find it before peak light? Can I remove the galaxy and/or nearby bright sources? Do I have quality, multi-band light curves for 30+ days? Can I estimate local extinction? and related issues. 	 Is the Host Galaxy: Star forming? Luminous? Approx. Face on? 	
Thanks to a phenomenal effort from the SNe/transient communities 40 SNe Ia within 40 Mpc have this data (~50%).		

CNIA	La Cuitability	
DINE		
	ia Calcacilley	

(2) Can I measure its distance? (1) Can I characterize the SNe? YES! (most of the time) With Cepheids? Did I find it before peak light? Is the Host Galaxy: ٠ Can I remove the galaxy and/or nearby bright sources? Star forming? • ٠ Do I have quality, multi-band light curves for 30+ days? Luminous? Can I estimate local extinction? Approx. Face on? ٠ ... and related issues. . If YES to all of the above, do I have: ٠ 10-20 epochs of optical imaging to find the • Cepheids and determine periods? Thanks to a phenomenal effort Do my Cepheids span a range of log(P)? Is there spatially resolved metallicity from the SNe/transient information? Can I measure local extinction? communities 40 SNe Ia within 40 Crowding? Mpc have this data (~50%). ... and related issues. **Chris Burns (CSP) & Ben Shappee (ASAS-SN)

SNe Ia Suitability

(1) Can I characterize the SNe? YES! (*most of the time*)

- Did I find it before peak light?
- Can I remove the galaxy and/or nearby bright sources?
- Do I have quality, multi-band light curves for 30+ days?
- Can I estimate local extinction?
- ... and related issues.

Thanks to a phenomenal effort from the SNe/transient communities 40 SNe Ia within 40 Mpc have this data (~50%).

**Chris Burns (CSP) & Ben Shappee (ASAS-SN)

(2) Can I measure its distance?

With Cepheids? MAYBE?

- Is the Host Galaxy:
 - Star forming?
 - Luminous?
 - Approx. Face on?
- If YES to all of the above, do I have:
 - 10-20 epochs of optical imaging to find the Cepheids and determine periods?
 - Do my Cepheids span a range of log(P)?
 - Is there spatially resolved metallicity information?
 - Can I measure local extinction?
 - Crowding?
 - ... and related issues.

and herein lies the limitation.

Tip of the Red	Giant Branch
PROs	CONs

Tip of the Red	Giant Branch	
PROs	CONs	
 Not variable. Well understood physics. 		

Tip of the Red	Giant Branch
PROs	CONs
 Not variable. Well understood physics. Can be applied to: ALL Hubble Types ALL inclinations ALL luminosity classes 	

Tip of the Red	Giant Branch
PROs	CONs

- Not variable.
- Well understood physics.
- Can be applied to:
 - ALL Hubble Types
 - ALL inclinations
 - ALL luminosity classes
- Apply to low-density regions of galaxies.
- Few differences between local stars and distant stars.

Tip of the Red Giant Brancl	h
-----------------------------	---

CONs

• Not variable.

- Well understood physics.
- Can be applied to:
 - ALL Hubble Types
 - ALL inclinations
 - ALL luminosity classes
- Apply to low-density regions of galaxies.

PROs

- Few differences between local stars and distant stars.
- Metallicity effects projected into color axis.
- Single dataset to find and characterize

Tip of the Red Giant Brancl	h
-----------------------------	---

CONs

- Well understood physics.
- Can be applied to:
 - ALL Hubble Types
 - ALL inclinations
 - ALL luminosity classes
- Apply to low-density regions of galaxies.

PROs

- Few differences between local stars and distant stars.
- Metallicity effects projected into color axis.
- Single dataset to find and characterize
- Red candle → make use of future IR facilities.

Tip of the Red Giant Branch

,	Not variable.

- Well understood physics.
- Can be applied to:
 - ALL Hubble Types
 - ALL inclinations
 - ALL luminosity classes
- Apply to low-density regions of galaxies.

PROs

- Few differences between local stars and distant stars.
- Metallicity effects projected into color axis.
- Single dataset to find and characterize
- Red candle → make use of future IR facilities.

- No 100 year legacy.
- Great non-uniformity of application in the literature
- No direct trigonometric calibration.

CONs

Tip of the Red Giant Branch

PROs

- Not variable.
- Well understood physics.
- Can be applied to:
 - ALL Hubble Types
 - ALL inclinations
 - ALL luminosity classes
- Apply to low-density regions of galaxies.
- Few differences between local stars and distant stars.
- Metallicity effects projected into color axis.
- Single dataset to find and characterize
- Red candle → make use of future IR facilities.

- No 100 year legacy.
 - Every SNe Ia host must be measured for the first time.
- Great non-uniformity of application in the literature
 - Develop techniques applicable over 20 mag in distance modulus.
- No direct trigonometric calibration.

CONs

• Collect the ancillary data to use *Gaia* parallaxes

1. Build a Sample of SNe Ia The CCHP Pathways to a 3% Determination of the Hubble Constant pre-Gaia Gaia pre-Gaia Gaia 0.9% 2.1% 0.5% **.7% 0.5%** 2.9% 2.4% **Local Group** Galactic **RR Lyrae/TRGB** 221 **RR Lyrae** 12 NGC 4258 Maser SNe la SNe la into & Hubble TRGB Galactic Flow TRGB 6.3% 2.3% 2.1% 0.5% 5.9% 0.5% Gaia pre-Gaia pre-Gaia Gaia 100 Mpc Distant 0.01 0.1 10 0 Beaton et al. 2016

Conclusions

- Path to 1% H₀ requires standard candles that provide access to high no. of SNe Ia.
 - TRGB has numerous advantages toward this goal.
- Scale and volume probed by *Gaia* makes secondary distance indicators primary distance indicators.
- So far, Cepheid, RR Lyrae, and TRGB distances are remarkably consistent.
 - More tests on-going in 6 Local Group galaxies and 9 SNe Ia hosts.
- TRGB in NIR could permit every SNe Ia within 40 Mpc to have a < 5% distance.

To Close:

It's got to be fun, I don't think anybody should tell you that he's slogged his way through 25 years on a problem and there's only one reward at the end, and that's the value of the Hubble constant.

That's a bunch of hooey.

The reward is learning all the wonderful properties of the things that don't work.

From Obituary in NYTimes by D. Overbye

Sandage, Beaton & Majewski 2016