

Galactic Disk Structure and Metallicity of Mono-age Stellar Populations from LAMOST

Maosheng Xiang (LAMOST Fellow)

National Astronomical Observatories, Chinese Academy of Science

IAUS330, Nice, 2017-04-28

Outline

- Motivation
- The LAMOST Galactic surveys
- Stellar metallicity of mono-age populations
- Disk structures of mono-age populations
- Summary

The Milky Way's disk

When did the disk start to form? and how? What's the star formation history of the disk? How did the structure/metallicity of the disk evolve with time?

The LAMOST Galactic Spectroscopic Surveys

0.5

First five-year survey: 2012/10-2017/6 6.5 million stellar spectra by June, 2016 R~1800; magnitude range: 9 - 17.8 in r-band

Robust stellar parameters with LSP3: $V_r(5km/s)$, $T_{eff}(100K)$, logg (0.1dex), [Fe/H](0.1dex), [a/Fe] (0.05dex) [C/H]&[N/H](0.1dex), E_{B-V} (0.04mag), $M_V(0.3mag)$, Distance(15%), age

+ Proper motions from Gaia: >12 dimensions

Xiang et al. 2017, MNRAS, 464, 3657; ibid, 467, 1890

The LAMOST MSTO star sample

10000 9000 8000 7000 6000 5000 4000 3000

T_{eff} (K)

One million stars defined in the $T_{eff} - M_V$ diagram

 $T_{\rm eff}$ < 10000 K, [Fe/H] > -1 dex, M_V cut SNR > 20 (SNR > 50 for 60 per cent stars)

Stellar **age** and **mass** are estimated from T_{eff} , M_V, [Fe/H], [α /Fe] with isochrones in Bayesian scheme

Uncertainties: 20-30% in age; <10% in mass

Xiang et al., submitted

Validations of age & mass estimates

 Gaia TGAS, Asteroseismology, Open clusters, Mock stars, duplicate observations

Age – [Fe/H] – $[\alpha/Fe]$

[Fe/H]-poor, [α /Fe]-rich stars are old Sharp demarcation between intermediate-age and young stars Decreasing trend of "thin disk" stars Young, α -rich stars: binaries, BSS, HB, bad spectrum

Double sequence of age—[α/Fe] Double sequence of age—[Fe/H]

Xiang et al., submitted

[Fe/H] — [α /Fe] of Mono-age populations

The "thick disk" sequence disappear when age < 8Gyr The "thin disk" sequence occur at 8-10 Gyr ago

Age of mono-abundance populations

Significant temporal evolution of radial metallicity gradients

Significant temporal evolution vertical metallicity gradients; **oldest stars have negative vertical gradients of –0.1dex/kpc**

Maximal gradients at ~8Gyr

See Wang Chun's poster (c7) for spatial variations of metallicity distribution function and [α /Fe] gradients of mono-age populations

Summary

- LAMOST Galactic surveys collected 7 million stellar spectra, simple target selection function; Accurate stellar parameters have been derived
- Robust ages and masses of a million disk stars
- Clear patterns among age -[Fe/H] -[α/Fe] correlations; The age-[Fe/H] relations show double negative sequences
- Temporal evolution of [Fe/H] & [α/Fe] gradients; Stars of ~8Gyr exhibit maximal radial gradients
- The "thin" disk sequence in the [Fe/H]-[α/Fe] plane arise from 8-10Gyr; the "thick" disk sequence becomes very weak below 8Gyr
- The stellar mass density distribution exhibits plenty of spatial and temporal features

Take home message

Accurate ages have already come!

A combination of the LAMOST data with Gaia DR2+ will be certainly powerful resource to further characterize the Milky Way

Thanks for your attention