THE SOLAR SYSTEM SEEN BY GAIA

P. Tanga Laboratoire Lagrange, Observatoire de la Côte d'Azur, France

Understanding the Solar System

• Where the Earth water comes from? • How the asteroid population formed? bodies and planets?

What do we need to know

A CONTRACTOR

- composition of small bodies
- mass, size, density
- composition and mixing of the asteroid belt
- meteorite-asteroid compositional link
- dynamical and collisional mechanism
- surface phenomena

The impact of Gaia on asteroid science

• What Gaia observes

-350.000 asteroids at V=20 (>700.000 known today) -comets, TNOs (10-20) –large planetary satellites

Why we are interested

– very poorly known properties:

- a few 1000s spectra, 10s masses, ~400 shapes...
- direct determination from Gaia data

The contribution of Gaia astrometry

- Better orbits —> talk by F. Spoto
- Accurate masses of large perturbers in the Main Belt ~60 of them (Gaia 5 yr) at 10% level vs. ~10 known today —> talks by A. Ivantsov
- Presence of satellites from the motion of primaries around the center of mass
- Non-gravitational effects Yarkovsky thermal recoil effect
- Impact on ground-based observational activities -> talks by B. Sicardy / D. Berard / J. Desmars / A. Ramos-Gomez stellar occultations impact hazard monitoring, archive observations —> talk by F. Spoto
- Contribution to spacecraft navigation in the Solar System the example of New Horizons flyby with (486958) 2014 MU69 on Jan. 1, 2019

-> + several posters!!

Simulations of Gaia asteroid astrometry

- activity developed in the frame of CU4 by F. Mignard
- requires to look for detections by crossing Gaia scanning law to asteroid trajectories
- appropriate error model required

Orbit improvement perspectives

Simulated detections, with realistic error models + orbit determination

Asteroid ephemeris and occultation prediction

Yarkovsky effect and dynamical family ages

 $\Delta(t) = \Delta(a) / (da/dt)$

Yarkovsky effect and dynamical family ages

- Yarkovsky calibrated on a single asteroid (Bennu)...
- ...can be rescaled using the family spectral class

• Strong hypothesis: homogeneity inside the family

Yarkovsky by Gaia (alone ... or not)

• Enormous potential of re-calibrated, "old" astrometry debiasing of MPC astrometry (Farnocchia et al. 2015) new measurements of old plates (NAROO project, Arlot et al. 2013)

The contribution of Gaia on physical properties

- Asteroid low resolution spectroscopy resolution + number of objects: simply the most extensive survey *ever* in the visible today: 3000 spectra; 10.000s "colors"
- A new taxonomy
 look for differentiation in asteroid families
 discover old, dispersed families
- Photometry: shapes from photometric inversion

 ellipsoids foreseen in the data reduction
 + ground-based "dense" photometry for complex shapes —> talk by J. Durech
- Photometry: phase magnitude curves allow to determine absolute magnitudes —> albedos + ground-based photometry around opposition

-> + several posters!

Mean Speetrum of Group 1 (SDSS) Spectra of the whole Group 1 (SDSS) n spectrum of S class (Bus-DeMeo 20) Massalia (22) Kallicpe

Phase Angle (°)

Image of the week! asteroid spectra

Asteroids for the Gaia Data Release 2 (Apr. 2018)

Content:

- asteroid ID and positions (Ra, Dec) max. 10 per transit
- positions of Gaia
- TCB gaiacentric epochs associated to the positions corrections (relativistic, aberration...)
- uncertainties & correlations
- brightness (1 per transit) and uncertainty ${}^{\bullet}$

Processing and scientific validation - main contributors:

- IMCCE, France: INAF, Italy: UTINAM, France: OCA, France: ORB, Belgium:
- U. Helsinki, Finland:
- J. Berthier, D. Hestroffer A. Cellino, A. Dell'Oro J.M. Petit Th. Pauwels
 - K. Muinonen, G. Fedorets

- M. Delbo, L. Galluccio, F. Mignard, Ch. Ordenovic, F. Spoto, P. Tanga

Selection for the Gaia Data Release 2 (Apr. 2018)

- "bright" asteroids having more than 9 transits
- selected objets have all of their transits included

Be prepared: some warnings

- Highly correlated (RA, Dec) epoch positions
- Fundamental for asteroids!

Tools must be ready to handle accuracy ~100 X better

• difficulties in exploiting existing archive observations (reduced with biased catalogues)

Asteroid alerts

- Goal:
 - identify potentially "new" asteroids
 - diffuse predictions of sky search areas to ground-based observers
- Exploits daily attitude solution
 - 70-100 mas accuracy
- Short arc orbit determination -Statistical method : MCMC \rightarrow bundle of orbit (Oszkiewicz, D., 2009; Muinonen, K. 2015)

Gaia observations

Tanga et al. 2016

Diffusion of asteroid alerts

ive alerts							Selected alerts: 3/12	
Begin ▲▼	End 🖛	V _{mag} ▲▼	RA 🗸	Dec ▲▼	Area 🗸	Name Av	Report	Details
2017-04-06	2017-04-15	19.94	141.533	-14.3815	0.41116	g1N00a	C	θ
2017-04-04	2017-04-13	19.95	143.6757	-11.9679	0.72448	g1N002	C	0
2017-03-29	2017-04-15	20.13	142.9194	-22.5203	0.29496	g1M008	C	0

Footprints of areas to search for (in red) and the field of view (in blue, 15x15 arcmin²) of your device (OHP). You can change your device and its parameters in your settings.

First confirmation of an asteroid alert

- Orbit computation: Gaia + ground

• Observations on Dec. 29 (Gaia - 4 transits) and Jan. 3-4 (OHP, 2 nights)

Conclusions

- Gaia is an extraordinary tool for Solar System studies
- be ready for asteroids in GDR2!
- ...and asteroid alerts are already running
- Non-negligible impact on ground-based activities
- Stellar astrometry by Gaia is fundamental for Solar System studies, too

