

Hamish Silverwood ICC, University of Barcelona **S**@hsilver Sofia Sivertsson OKC Stockholm Justin Read University of Surrey Gianfranco Bertone GRAPPA, University of Amsterdam Pascal Steger ETH Zurich Sivertsson et al., arXiv:1705:XXXXX

WIMP, sterile neutrino & axion direct detection via nuclear/electron recoils (e.g. XENON1T, LUX)

$$\frac{\mathrm{d}R}{\mathrm{d}E} = \frac{\rho_{\odot}}{m_{\mathrm{DM}}m_{\mathcal{N}}} \int_{v > v_{\mathrm{min}}} \mathrm{d}^{3}v \, \frac{\mathrm{d}\sigma}{\mathrm{d}E}(E,v) \, v \, f(\vec{v}(t))$$

Indirect Detection through Solar Capture and annihilation to neutrinos (e.g.lceCube, Antares, KM3NeT, Super-Kamiokande)

$$C^{\odot} \approx 1.3 \times 10^{21} s^{-1} \left(\frac{\rho_{local}}{0.3 \text{GeV cm}^{-3}} \right) \left(\frac{270 \text{km s}^{-1}}{v_{local}} \right) \\ \times \left(\frac{100 \text{GeV}}{m_{\chi}} \right) \sum_{i} \left(\frac{A_i (\sigma_{\chi i,SD} + \sigma_{\chi i,SI}) S(m_{\chi}/m_i)}{10^{-6} \text{pb}} \right).$$

Relic Axion Searches via conversion to photons (e.g. ADMX)

$$P = \frac{2\pi\hbar^2 g_{a\gamma\gamma}^2 \rho_{\rm DM}}{m_a^2 c} \cdot f_\gamma \cdot \frac{1}{\mu_0} B^2 V_{nlm} \cdot Q$$

Scans of theoretical parameter space, eg Supersymmetry

Why do we care about local DM density?

Scans of theoretical parameter space, eg Supersymmetry

How do we measure the local DM density?

function modelling

e.g. Dehnen & Binney 1998; Weber & de Boer 2010; Catena & Ullio 2010; Salucci et al. 2010; McMillan 2011; Nesti & Salucci 2013; Piffl et al. 2014; Pato & locco 2015; Pato et al. 2015; Binney & Piffl 2015,

Local model and local measurements: larger uncertainties but fewer • assumptions, e.g. vertical motions of stars in the disc

Fit global model to global measurements, extrapolate local value: powerful, but we have to assume global properties of the halo, e.g. rotation curves, distribution

e.g. Jeans 1922; Oort 1932; Bahcall 1984; Kuijken & Gilmore 1989b, 1991; Creze et al. 1998; Garbari et al. 2012; Bovy & Tremaine 2012; Smith et al. 2012; Zhang et al. 2013; Bienaymé et al. 2014, Xia et al. 2016

Input Data Set:

H. Silverwood, IAUS 330, 26 April 2017

Astrometric observations-SDSS-SEGUE G-dwarfs + USNO obs. for proper motions a-old ("thick") & a-young ("thin")

 $z, R, v_z, v_R data$

Tracer density & velocity dispersion

Budenbender, van de Ven, Watkins, 2014 1407.4808

Our Method - Integrated Jeans Equation

- We need to link positions and velocities to the mass distribution
- Tracer stars follow the Collisionless Boltzman Equation:

= 0 from assumption of time independence

- $f(\mathbf{x},\mathbf{v})$ stellar distribution function, positions \mathbf{x} , velocities \mathbf{v} , gravitational potential $\mathbf{\Phi}$
- Integrate over velocities, switch to cylindrical-polar co-ordinates, and get the **Jeans** Equation in z.

$$\cdot \mathbf{v} - \nabla_{v} f \cdot \nabla_{x} \Phi = 0$$

$$(\nu \sigma_{\phi z}) + \frac{1}{\nu} \frac{d}{dz} \left(\nu \sigma_z^2 \right) = -\frac{d\Phi}{\frac{dz}{K_z}}$$

erm: \mathcal{A}
Surface
Density $\Sigma_z(z) = \frac{|K_z|}{2\pi G}$

'tilt' term: \mathcal{T}

$$\sigma_z^2(z) = \frac{1}{\nu(z)} \int_0^z \nu(z') \left[K_z(z') \right]_0^z \left[K_z(z') \right$$

Construct model for

- tracer density v,
- Dark Matter + Baryon density $\rightarrow K_z$,
- tilt term T(z).

Calculate velocity dispersion σ_z , then fit the model to velocity dispersion, tracer density & tilt term to data. Use MultiNest to derive posterior distribution on DM.

 $\underbrace{\frac{1}{R\nu}\frac{\partial}{\partial R}\left(R\nu\sigma_{Rz}\right)}_{R\nu} + \underbrace{\frac{1}{R\nu}\frac{\partial}{\partial\phi}\left(\nu\sigma_{\phi z}\right)}_{R\nu} + \frac{1}{\nu}\frac{d}{dz}\left(\nu\sigma_{z}^{2}\right) = -\frac{d\Phi}{dz}$ 'axial' term: \mathcal{A} Integrate to avoid noise $_{z}(z') - \mathcal{T}(z') - \mathcal{A}(z') dz' + rac{C}{
u(z)}$ = 0 from axisymmetry

Our Method - Modelling and MultiNest Construct models for tracer density, baryon+DM mass, tilt term

- Calculate z velocity dispersion
- Fit tracer density and z-velocity dispersion to data with MultiNest

Modelling the components: Mass profile - K_z term

- We assume constant DM density going up in z
- Poisson Equation in Cylindrical Coordinates picks up a Rotation Curve term

$$\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial z^2} + \underbrace{\frac{1}{R} \frac{\partial V_c^2(R)}{\partial R}}_{\text{`rotation curve' term: }\mathcal{R}} =$$

- Flat rotation curve makes rotation curve term disappear.
- Rotation curve term becomes a shift in the density.

$$\frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho(z)_{\text{eff}} \qquad \rho(z)_{\text{eff}} = \rho(z) - \frac{1}{4\pi G R} \frac{\partial V_c^2(R)}{\partial R}$$

this to be on the order of **0.1 GeV/cm³** or **0.003 Msun/pc³**.

 $= 4\pi G\rho$

• We assume a locally flat RC, but from Oort constants we can estimate the systematic uncertainty from

9

Modelling the components:

Baryon Modelling

- Compiled from McKee+ ApJ 814(2015)13, arXiv:1509.05334
- thinner baryonic disc).
- $\Sigma_{\text{baryon}} (z \to \infty) = 46.95 \text{ M}_{\odot} \text{ pc}^{-2} \pm 13\%.$

• Marginalize over the total surface density and the underlying shape (e.g. thicker vs

Modelling the components: Tilt Term:

Vertical behaviour of σ_{Rz}^2 at the solar radius

Fit to data from Budenbender+

H. Silverwood, IAUS 330, 26 April 2017

- Encodes information on the radial
- behaviour of V and $\sigma_{R_7}^2$
- No radial information from Budenbender+, so we impose priors on k based on Bovy et al. 2016: a-young k = [-1.3, -1.0] α -old k = [-0.5, 1.5]

Results: a-young vs a-old

- mismatch between α -young and α -old results...

		α -yc Tilt	oung No Tilt	lpha-Tilt	old No Tilt	Combined analysis Tilt
95% CR upper	${ m GeVcm^{-3}}\ { m M}_{\odot}{ m pc}^{-3}$	0.59 0.016	$\begin{array}{c} 0.57\\ 0.015\end{array}$	$\begin{array}{c} 0.85\\ 0.022\end{array}$	$\begin{array}{c} 0.51 \\ 0.013 \end{array}$	$\begin{array}{c} 0.48\\ 0.013\end{array}$
68% CR upper	${ m GeVcm^{-3}}\ { m M}_{\odot}{ m pc}^{-3}$	$\begin{array}{c} 0.53\\ 0.013\end{array}$	$\begin{array}{c} 0.53 \\ 0.014 \end{array}$	$\begin{array}{c} 0.79 \\ 0.021 \end{array}$	$\begin{array}{c} 0.48\\ 0.013\end{array}$	$\begin{array}{c} 0.43 \\ 0.012 \end{array}$
Median	${ m GeVcm^{-3}} \ { m M}_{\odot}{ m pc}^{-3}$	0.46 0.012	$\begin{array}{c} 0.48\\ 0.013\end{array}$	$0.73 \\ 0.019$	$\begin{array}{c} 0.46 \\ 0.012 \end{array}$	$\begin{array}{c} 0.40\\ 0.011\end{array}$
68% CR lower	${ m GeVcm^{-3}}\ { m M}_\odot{ m pc}^{-3}$	$0.37 \\ 0.0098$	$\begin{array}{c} 0.42\\ 0.011\end{array}$	$\begin{array}{c} 0.68\\ 0.017\end{array}$	$\begin{array}{c} 0.44 \\ 0.012 \end{array}$	$\begin{array}{c} 0.37\\ 0.0097\end{array}$
95% CR lower	${ m GeVcm^{-3}}\ { m M}_\odot{ m pc}^{-3}$	$0.30 \\ 0.0078$	$\begin{array}{c} 0.35\\ 0.0092\end{array}$	$\begin{array}{c} 0.60\\ 0.016\end{array}$	$\begin{array}{c} 0.42 \\ 0.011 \end{array}$	$\begin{array}{c} 0.34 \\ 0.0091 \end{array}$

α -young ("thin disc") not as sensitive to tilt term as the α -old ("thick disc")

Results: We don't trust a-old...

Results: We don't trust a-old...

- mass at low z.
- α-old data has more unknowns and potential problems:
 - more sensitive to tilt and hence our assumptions on the tilt model
 - more contamination from stellar halo •
 - stars are further away, increasing measurement errors
 - previous assumptions on the impact of the rotation curve term are derived • close to the disc, may not be applicable at larger z
 - thick disc has longer vertical equilibration time, so might still be oscillating from prior satellite merger

• α-old (thick disc) results favour a very high baryon density e.g. large amounts of

14

What we trust: a-young ("thin disc") with tilt.

$\rho_{\rm DM} = 0.46^{+0.07}_{-0.09} \,\text{GeV}\,\text{cm}^{-3}$ $= 0.012^{+0.001}_{-0.002} \,\text{M}_{\odot} \,\text{pc}^{-3}$

H. Silverwood, IAUS 330, 26 April 2017

The Hopes for Gaia...

- and velocity dispersion σ_{Rz} to better model the tilt term.
- We need more data on the impact of the rotation curve, including at high-z

H. Silverwood, IAUS 330, 26 April 2017

• We need more data on the radial variation of tracer density v

So we will do what we can with TGAS and other cross matches, and wait for DR2...

• $\rho_{\rm DM} = 0.46 {}^{+0.07}_{-0.09} \,{\rm GeV \, cm}^{-3}$ = $0.012 {}^{+0.001}_{-0.002} \,{\rm M_{\odot} \, pc}^{-3}$

We need more data on the radial variation of \sigma_{Rz}^2, and the rotation curve term at higher z...
 and so on to Gaia DR2!

Conclusions

