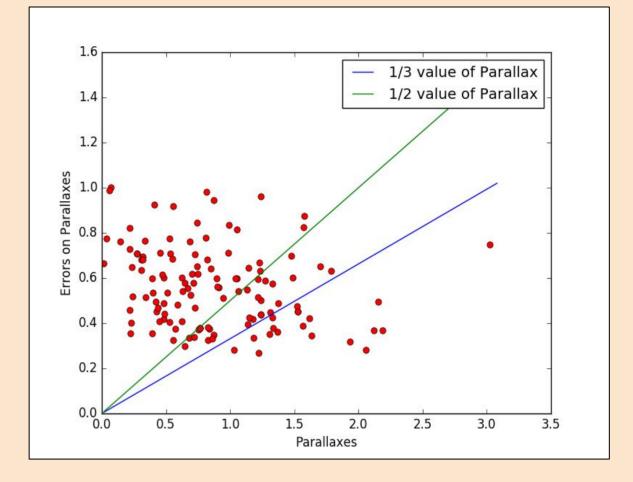

THE GAIA HR DIAGRAM OF S TYPE STARS

S. Shetye^{1,2}, S. Van Eck¹, A. Jorissen¹, H. Van Winckel², L. Siess¹, S. Goriely¹ ¹Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Bruxelles, Belgium ²Instituut voor Sterrenkunde, KU Leuven, Leuven, Belgium


What are S type stars

- Late type giants? with **ZrO** and **TiO** molecular bands
- Transition objects between M and Carbon stars $\implies 0.5 \le C/O < 1$
- Signatures of over-abundances of s-process elements

SAMPLE SELECTION

Parallaxes from TGAS catalogue We considered S stars with $\sigma_{\omega} \leq \omega/3$ **High Resolution spectra from HERMES** [1] δ < -30 and V < 11

- Thermally Pulsing Asymptotic Giant Branch (AGB) stars
 - Technetium-rich

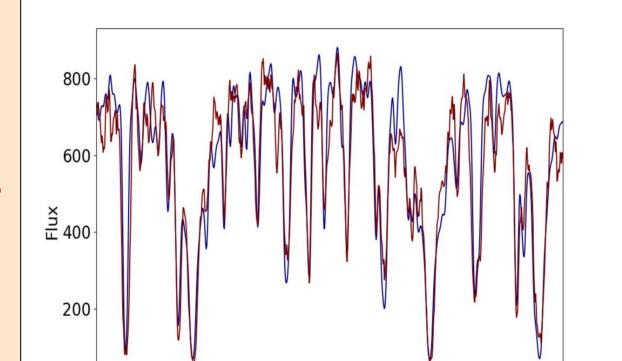
- Polluted binaries with a former AGB companion (now WD)
- Technetium-poor

Figure 1 : Error on parallax vs Parallax from the TGAS catalogue for 124 S stars. The blue line separates the stars with $\sigma_{\omega} \leq \omega/3$ and the green line separates the stars with $\sigma_{\omega} \leq \omega/2$.

3

STELLAR PARAMETER DETERMINATION

Models

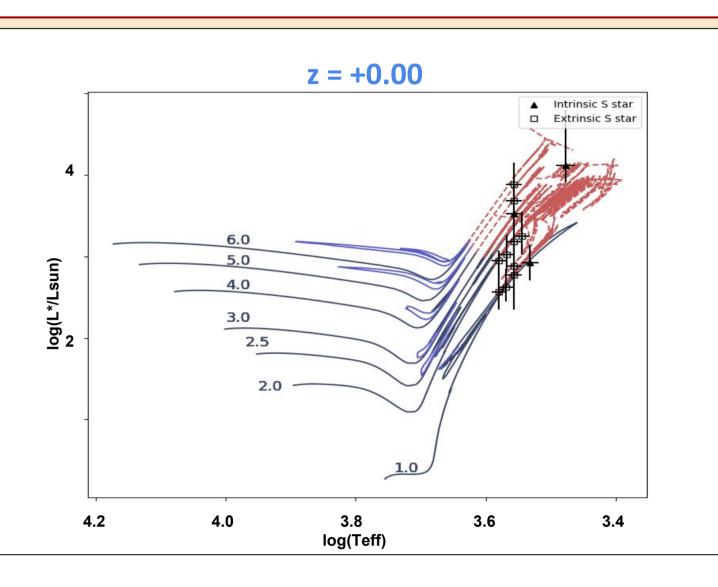

MARCS model atmospheres for S stars [2]

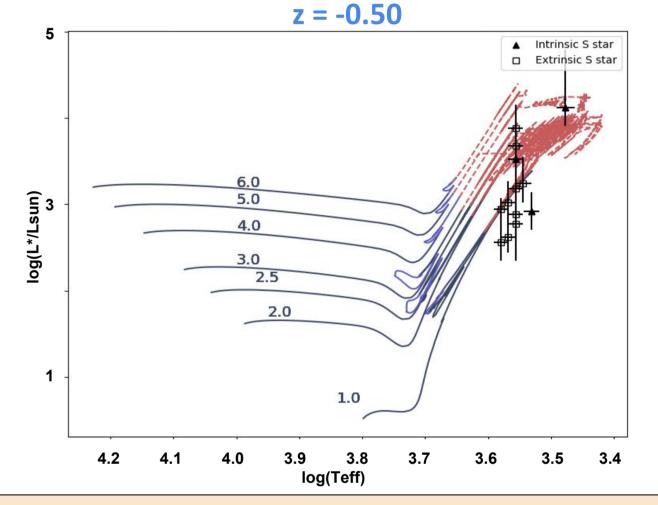
- $2700 \le T_{eff}(K) \le 4000$
- [Fe/H] = 0.0 and -0.5
- $-0.50 \le C/O \le 0.99$
- $-0 \le \log g \le 5$
- $[\alpha/Fe] = -0.4*[Fe/H]$
- [s/Fe] = +0,+1 and +2 dex

The thermal structure of S stars is very sensitive to the C/O ratio .

Atmospheric parameters by spectral fitting

- Fitting observed spectra with synthetic spectra from MARCS models.
- Obtaining χ^2 for spectral regions of 200 Å width.
- Extracting parameters of the best fitting model (the one with least χ^2).


HR DIAGRAM


Tc rich S stars:

Cooler, more Luminous objects. In the Thermally Pulsing AGB phase

Tc poor S stars: Hotter, Intrinsically fainter. Metal rich, on the tip of Red Giant Branch (RGB) or early AGB

Figure 3 : Comparison of the position of S stars in the HR diagram with the evolutionary tracks from the STAREVOL code [3]. Dark Blue represents the RGB phase, Light Blue represents the He burning Main

<u>Figure 2</u> : An example of the agreement achieved from the χ^2 routine for Hen 4-137.Maroon: Observed spectra, Dark blue: Synthetic spectra

0-		,				
5394	5396	5398	5402 velengt	5406	5408	5410

6

log g :

1.0

1.4

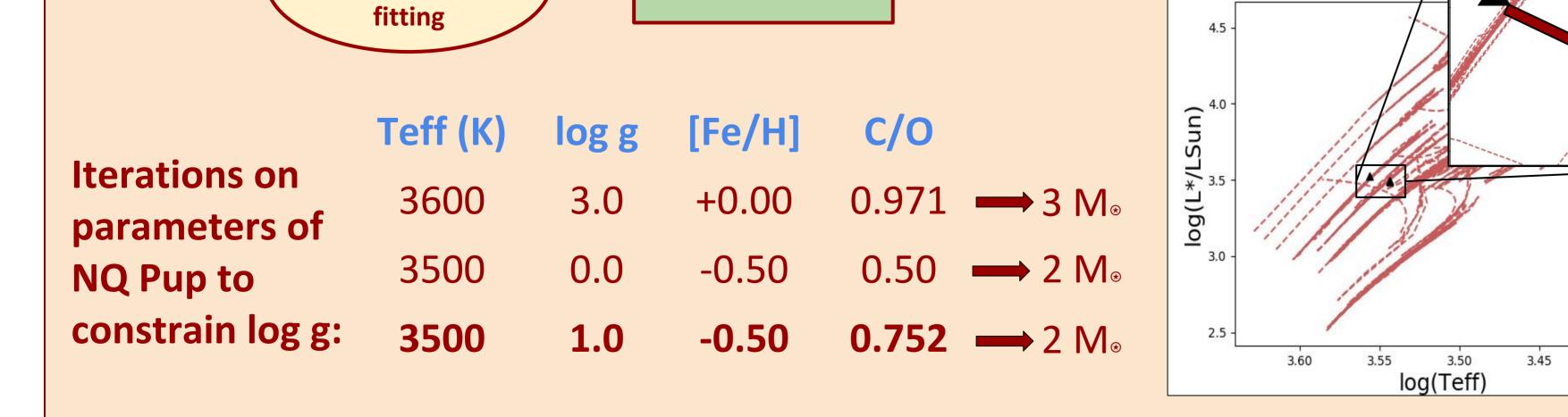
0.8

0.1

3.40

CONSTRAINING LOG G WITH GAIA Star log g : from χ^2 from HRD 2.0 Comparison of log g obtained from the χ^2 fitting **BD +69 524** and from the position on the HRD (z=0.00) : **BD +28 4592** 2.0 NQ Pup 3.0 UY Cen 3.0 Gaia parallaxes can help us constrain log g by iterating on parameters from χ^2 fitting and HRD: χ^2 fitting Gaia Position on the + Teff parallax HRD log g_{gaia} $\log g_{\chi^2}$ Figure 4 : Evolution of the position of NQ Pup on the HRD (z=0.00) as STOP it's stellar parameters are iterated to constrain log g Yes

PRELIMINARY RESULTS & CONCLUSIONS


Derived parameters for following stars by spectral analysis

-	Teff (K)	log g	[Fe/H]	C/O	[s/Fe]
HD 191589	3600	1.0	0.0	0.60	1.0
NQ Pup	3700	1.0	-0.3	0.50	1.0
UY Cen	3000	1.0	0.0	0.99	1.0

Conclusions:

- GAIA differentiates the population of intrinsic and extrinsic S stars.

Fundamental parameter determination of S stars is crucial but is well constrained by the combination of

If $\log g_{gaia} = \log g_{\chi^2}$?

high-resolution spectra, fine gridded models and GAIA parallaxes.

Abundance determination of intrinsic S stars and comparison with theoretical predictions [4] is a work in progress.

References:

Adopt log g_{gaia}

& go to χ^2

NO

elgian Science Policy Offi

[1] Raskin, G. (2011). Astronomy and Astrophysics, Volume 526, id.A69, 12 pp. [2] Van Eck, S. et al. (2017). A&A 601, A10: Refer to the poster of S. Van Eck.

[3] Siess L.; Arnould M. (2008). Astronomy and Astrophysics, Volume 489, Issue 1, 2008, pp.395-402.

[4] S. Goriely and L. Siess, 2017 (A & A, In prep)