

The Gaia Red Clump: calibration and characterisation

Laura Ruiz-Dern, C. Babusiaux, F. Arenou

Observatoire de Paris-Meudon

Nice 2017, 28th April

Standard candle \rightarrow Good distance indicator

M, weakly dependent on colour, age and chemical composition

Many RC stars in solar neighbourhood

Absolute Magnitude

I. Gaia Red Clump photometric calibration

II. Gaia Red Clump characterisation

I. Gaia RC Photometric Calibration

Models do not fit observations

X Unavailable Gaia calibrated filter model for the DR1

Ruiz-Dern et al., 2017 (in prep.)

Empirical Calibration

Colour vs G-K

Effective Temperature vs G-K

Sample selection

High Photometric quality

- > G / B H_pVI / B_TV_T / J K
- GDR1 / Hipparcos / Tycho2 / 2MASS + Laney et al. [2012]

Binarity and Multiplicity removal

- Hipparcos Binary Flag
- Tycho Double System Catalogue
- SB9, Simbad

Colour G – K > 1.6

Parallax (ω): m_G +5+5log(ω +2.3 σ_{ω})<2.5

Spectroscopic Metallicity

APOGEE, RAVE, LAMOST, PASTEL, GALAH,...

Interstellar extinction handling

- ► A₀ < 0.03
- Based on :
 - 3D extinction map TGAS data (Capitanio et al. 2017, in prep.)
 - > 2D extinction map (Schlegel et al. 1998)

1329 stars

Model selection method

Colour = $a_0 + a_1(G - K) + a_2(G - K)^2 + a_3[Fe/H] + a_4[Fe/H]^2 + a_5(G - K)[Fe/H]$

Monte Carlo Markov Chain (MCMC)

account for all variables uncertainties

B

H

B

V

G

J

K

Deviance Information Criterion (DIC) Model selection: penalization by the complex terms

Outliers at 3σ from fit Checked one by one

Colour vs G-K

G-J vs G-K

B-K vs G-K

Ruiz-Dern et al., 2017 (in prep.)

T_{eff} calibrations

548 stars

Ruiz-Dern et al., 2017 (in prep.)

- IRFM giants
- IRFM giants
- Interferometry
- Photometry

Other authors: T_{eff} vs V-K_s

This work: T_{eff} vs G-K_s

V-K_s vs G-K_s

Ruiz-Dern et al., 2017 (in prep.)

I. Gaia Red Clump photometric calibration

II. Gaia Red Clump characterisation

II. Gaia RC Characterisation

Gaia Collaboration, 2016, A&A

Need to account for extinction to use Gaia G magnitude

TGAS HR diagram

Ruiz-Dern et al., 2017 (in prep.)

Padova Isochrones

 ${\rm T}_{\rm eff}$ from Padova Isochrones ${\rm G}-{\rm K}_{\rm s}$ obtained using ${\rm T}_{\rm eff}$ calibration

Ruiz-Dern et al., 2017 (in prep.)

RC Parameters

 $G-K_s - T_{eff}$ calibration

Extinction coefficients model (C. Babusiaux)

 $k_{\lambda} = f(A_0, T_{eff})$ and $k_{\lambda} = f(A_0, colour)$

- · Fitzpatrick and Massa (2007)
- RC Spectral Energy Distribution

k_g empirical

Using calibrations of this work
(Danielski et al. 2017, in prep.)

* A_0 absorption at λ = 550 nm (Gaia reference value)

Effective Temperatures

Interstellar extinctions

Gaia Data Validation

Zero-point of parallaxes and their precision

DISTANT ENOUGH Estimated distance uncertainty better than Gaia ω precision [TGAS: $\sigma_{\omega(EXT)} < 0.1$ mas]

DR1

DR2

APOKASC → **Apogee** + **Kepler**

Distance modulus calculated by Rodrigues et al. (2014) using Padova isochrones relations 984 Tycho sources with σ < 0.1 mas (APOKASC median σ ~ 0.02 mas)

Arenou et al. 2017

Larger RC sample

Distance modulus derived from:

Calibrations of this work + Asteroseismic constraints

Conclusions

DR1 Parallaxes

Gaia RC photometric calibration (Ruiz-Dern+ 2017, in prep.)

- Other Spectral Types (C. Danielski)
- k_G extinction coefficients (Danielski+ 2017, in prep.)

Gaia RC characterisation

- Padova Isochrones
- RC Parameters
- New 3D extinction map (Capitanio+ 2017, in prep.)
- $\cdot M_{c} \rightarrow distances$
- HR simulations (C. Hottier)

Gaia DR2: Use of calibrations for astrometric and photometric validation