SEARCH FOR GALACTIC WARP SIGNAL IN GAIA DR1 PROPER MOTIONS

Eloisa Poggio

Università degli Studi di Torino INAF – Osservatorio Astrofisico di Torino

IAU SYMPOSIUM 330 – ASTROMETRY AND ASTROPHYSICS IN THE GAIA SKY

24-28 April 2017, Nice, France

Collaborators:

R. Drimmel, R. L. Smart, A. Spagna, M.G. Lattanzi (INAF-OATo)

R. Andrae, C. Bailer-Jones, M. Fouesneau (MPIA, Heidelberg)

The Galactic warp

GAS

Burke (1957), Kerr et al. (1957), Westerhout (1957), Levine et al. (2006), Voskes & Butler Burton (2006), Kalberla et al. (2007)

• DUST

Drimmel & Spergel (2001), Marshall et al. (2006)

• STARS

Miyamoto et al. (1998), Smart et al. (1998), Drimmel et al. (2000), López-Corredoira et al. (2002), Yusifov (2005), Momany et al. (2006), Robin et al. (2008), Reylé et al. (2009)

Motivation

• Warped disks: **common** feature in spiral galaxies

ESO 510-G13 Credits: <u>NASA and The</u> <u>Hubble Heritage Team (STScl/</u> <u>AURA)</u>

NGC 3190 Credits: ESO/VLT

Motivation

- Warped disks: **common** feature in spiral galaxies
- Formation mechanism and dynamical nature: not clear
- In the Milky Way we can study the stellar kinematics associated with the warp
- Stars moving in a warped disk will have systematic vertical velocities with respect to the Galactic plane
- High precision astrometry will allow us to constrain models of the Galactic warp (transient vs. long-lived)

Data selection

- OB stars, because:
 - they trace the gaseous disk
 - they can be seen to large distances
- Spectroscopically selected Hipparcos OB3 stars + parallax < 2 mas + mv < 8.5
- 989 Hipparcos OB3 stars (**HIP2 sample**, astrometry from van Leeuwen, 2007), of which
- 758 stars are also in the Hipparcos subsample in Gaia
 DR1 (TGAS(HIP) sample)

- Luminosity function + spatial distribution
 - ✓ N(M) $\infty 10^{\alpha M}$
 - Exponentially decreasing vertical distribution
 - ✓ 4 major spiral arms + local arm
 - ✓ Warp
 - ✓ Vertical displacement of the local arm

- Luminosity function + spatial distribution
- Kinematics (solar motion, Galactic rotation, velocity dispersions...)
- Astrometric errors (e.g. $\sigma_{\mu\alpha}$ (TGAS) $\propto \sigma_{\alpha}$ (HIP2)/ Δ t)
- Completeness (Hipparcos and Hipparcos subset in TGAS)
- Add (or not) the warp systematic motions induced by the warp

Details in Poggio et al. (2017), 2017arXiv170204556P

$$z_w(R,\phi) = h(R) \sin (\phi + \phi_w)$$
$$h(R) = h_0 (R - R_w)^{\alpha_w}$$
For a long-lived warp:
$$\bar{v}_z(R,\phi) = \frac{\bar{v}_\phi}{R} h(R) \cos (\phi + \phi_w)$$

Results

Possible interpretations

1. The warp in the gas starts well beyond the Solar Circle.

Possible interpretations

2. The warp kinematic signal is overwhelmed by other vertical motions. (Gómez et al., 2013)

Possible interpretations The warp is short-lived / transient. 3. (Our model is wrong.) $h(R) \sin(\phi)$ Z_{W} $\overline{v}_{z}(k)$ COS

First results with TGAS (1)

TGAS in DR1:

Selection of ≈37000 OB star candidates in TGAS

First results with TGAS (1)

TGAS in DR1:

• Selection of ≈37000 OB star candidates in TGAS

First results with TGAS (2)

TGAS in DR1:

 Simplified model: spatial model + CMD + cut at G < 11.5 (no uncertainties)

$$p(\Theta_{model} | l, b, \varpi, G) = \frac{p(l, b, \varpi, G | \Theta_{model}) p(\Theta_{model})}{p(l, b, \varpi, G)}$$

Test: mock catalogue with
local arm pitch angle = 6.5 deg
Recovered value = (6.58 ± 0.26) deg
Local arm pitch angle

Next steps with TGAS

TGAS in DR1:

- Uncertainties
- Selection function: TGAS completeness and target selection

Summary

Hipparcos subsample in DR1:

 The observed kinematic trends in young OB stars cannot be be explained by a simple model of a stable long-lived warp

Poggio et al. (2017), "The kinematic signature of the Galactic warp in Gaia DR1 – I. The Hipparcos subsample", 2017arXiv170204556P

TGAS in DR1:

- Selection of OB star candidates
- Working on the model

BACK-UP SLIDES

The Galactic warp

Target selection

Target selection

SIMPLIFIED MODEL: no errors, no selection function

- Assume that we have one star with I, b, ϖ and G
- No errors, no selection function: only cut al G = 11.5
- Given one model with a set of parameters θ_i , we calculate:

.

SIMPLIFIED MODEL: no errors, no selection function

- Assume that we have one star with I, b, w and G
- No errors, no selection function (only cut at G = 11.5)

Observed CMD:

- ✓ IMF (Kroupa 2001, 2002)
- ✓ SFH (const in log(t_{age}), to be modified)
- Parsec isochrones (http:// stev.oapd.inaf.it/cgi-bin/cmd)
- Extinction map from Drimmel et al. (2003)

Solar metallicity

SIMPLIFIED MODEL: no errors, no selection function

TEST WITH A MOCK CATALOGUE:

(m=mock)

- Generate one mock catalogue (I,b,ϖ,Gmag)_m from model θ₀
- The likelihood ℓ_i of the model θ_i given the mock data
- Expectation: $\ell_0 > \ell_{1_j} \ell_{2_j} \ell_{3}$...

 $\ell_{i} = p((I,b,\varpi)_{m} | \theta_{i}) * p((G)_{m} | \theta_{i},(I,b,\varpi)_{m},A_{v})$

SIMPLIFIED MODEL: no errors, no selection function TEST WITH A MOCK CATALOGUE: (m=mock)

- Generate one mock catalogue (I,b,ϖ,Gmag)_m from model θ₀
- The likelihood ℓ_i of the model θ_i given the mock data

On the importance of the selection function

K-giants in LAMOST-TGAS with parallax < 0.5

On the importance of the selection function

On the importance of the selection function

• Astrometric errors

Completeness

Hipparcos subset in Gaia DR1

