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Why Study 
Ages?

 Ages are crucial for studies of the 
origin and evolution of planets, stars 
and galaxies

 Detailed studies of local populations 
(near-field cosmology) complement 
high-redshift studies of galaxy 
formation



The Age Problem
 Intrinsic Model Dependence
 Cannot Be Directly Calibrated
 Indirectly Inferred
 Strong Systematic Errors and Biases

NYTimes:

4 Sisters,
40 Years



The Ecology of Chronology
 Measure Stellar Observables
 Use Models to Relate Observables to Ages
 Apply Population and Selection Corrections

Important Consequence:

Even with Perfect Distances,
Ages Will Be Limited in Precision!



Inferring Errors is Extremely Complex

 When an astronomer says “The age 
is 100 Myr +/-10…

 Ce n'est pas une incertitude appropriée

EXAMPLE:

For the upper MS there 
are 3 age scales

No overshoot or rotation
Overshoot (various amounts)
Rotation 

Which produce similar
rank-ordering of ages but
very different scales…



The Revised Hipparcos CMD



Three Domains For Stellar
Age Techniques

Guede et al. 2015 –
Gaia Age Precision Simulations, D < 1 kpc



The Classic Case: 
Star Clusters

V

Y2 Isochrones (Demarque et al. 2001)



The Lesson of the 
Pleiades and 
Hipparcos

 We have a rich web of 
information about stars

 Missions such as Hipparcos
& Gaia add to our 
knowledge

 They don’t replace things 
that we already knew

Brown+ 2016



The Promise of Gaia
 An enormous increase in 

the quantity and quality 
of star cluster data

 Field star ages for bulk 
populations a realistic 
prospect…

 TESTS OF MODELS
 Masses (Binaries, 

Seismology)
 Abundances 

(Spectra)
 Photometry and 

Extinction

Van Leeuwen+2017

BUT:  Unlikely to significantly revise inferred 
properties of well-studied systems



The Most Interesting Failure Modes

 Overshoot vs. Rotational 
Mixing on the Upper MS

 “Hidden” Chemical Trends
Example: Variable He 

Enrichment or Trends Not 
Tied to Metals

 Unusual Stellar Evolution 
Channels (Interacting 
Binaries)

 Mass Loss



Spectroscopy and Seismology:
Perfect Together!

 Stellar pulsation frequencies encode 
fundamental data about the global 
and internal properties of stars

 Spectroscopy is uniquely powerful 
for measuring detailed abundance 
data AND gives essential Teff + log g 
+ RV data

 APOGEE-Kepler Asteroseismology 
Collaboration (APOKASC)
 DR10: 1,918 giants with spectra and 

asteroseismic parameters

PINSONNEAULT+ 2014

 DR13: 7,000+ targets

PINSONNEAULT+2017 (giant catalog)



APOGEE
 High resolution 

(R~22,000) full H-
band spectra

 ~230 science fibers 
per 6 square 
degree field

 S/N=100 in 3 hrs, 
H=12.2

 Automated 
Pipeline Analysis 
(Garcia Perez et al. 
2016, Majewski et 
al. 2015, Holtman et 
al. 2015….)

100,000 Abundances From 
High-Resolution Spectra



Asteroseismology

Log g ->

Can be Used to 
Infer Mass, Radius 
and Evolutionary 
State When  
Combined with
Spectroscopy



The Kepler Red Giant 
Population

Asteroseismology
+ Spectroscopy
⇒Log g, Teff, R, M and 

Evolutionary State

Pinsonneault+2014

Pinsonneault+2017
(in prep)

Powerful 
Complement 
To Parallaxes:
Mass + HRD 
Position



Scaling Relations: 
Mass from 
Frequencies

 Two most basic 
observables: 
Frequency of 

maximum power
νmax ~M/R2

Mean frequency 
spacing

∆ν2 ~M/R3

Pinsonneault et al. 2014

APOKASC 1 Mass Data in a Narrow Metallicity Range

BUT:  MASSES NEED TO BE CALIBRATED



Open Cluster Tests of 
Scaling Relations

LEFT: Scaling Relation 
Masses (points) scatter 
above the true cluster 
mean (lines)

RIGHT: Theoretically 
Predicted Mass 
Corrections
(Serenelli 2017)
Are of the Right Sign 
and Size

~4 Gyr

~2 Gyr

~8 Gyr

Note Small
Clump
Corrections



Improved Mass 
Agreement with 
Corrections

𝑴𝑴𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻
𝑴𝑴𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

=  0.911 +/- 0.016

𝑴𝑴𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻
𝑴𝑴𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

= 1.033+/-0.020 CAUTION: Larger Difference with
Binaries (Gaulme et al. 2016)



Distance can be used to 
independently test the two scalings

 For Clusters:
m + (m-M) + Ax = L
L + Teff = R

⇒M ~ νmax R2Teff
0.5

⇒M ~ ∆ν2R3

With Gaia we can do this 
test for thousands of field 
giants and with very high 
precision for clusters….



Asteroseismology Illuminates 
Defects in Our Isochrones

Tayar+ 2017 
(astro-ph/1704.01164)

3,000 1st Ascent Giants With Masses
Compare 
Isochrone-
Predicted Teff
With Actual Data

Result: A Strong 
[Fe/H] Dependent 
Offset



Isochrone
Offsets 
Induce 
Large Age 
Shifts in Red 
Giants



APOKASC Calibrates C/N and 
Overall  Spectra As Mass Diagnostics

Martig+ 2016 Ness+ 2016

Lower RGB Similar to
Upper RGB; Little mixing near solar [Fe/H]



Gyrochronology and Lower MS Ages

 Ages based on nuclear 
evolution are intrinsically 
imprecise on the lower 
main sequence

 Low mass stars spin down 
as they age: 
Retains precision even in 

low mass stars A
ge
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Epstein & Pinsonneault 2014:
Isochrone Vs. Gyro Compared,
Lower Main Sequence Mass (Msun)

Gyro

Isochrones



Gyrochronology In 
Theory

Epstein & Pinsonneault 2014

Young

Old

IMPORTANT POINT:

INTRINSICALLY
A SECOND ORDER
AGE DIAGNOSTIC

Rotation Correlated
With Age Derived
From Other Methods!



Gyro In Practice: Promise and Pitfalls

 We have 
developed 
an enormous 
database of 
rotation 
periods

 Progress 
driven by 
space and 
ground based 
transit surveys Well-Defined Rotation-Mass-Age Relations, Young 

Systems (Rebull+ 2016, 2017; Douglas+ 2017)

~625 Myr ~125 Myr



van Saders et al. 2016

The period–
age plane as 
predicted by 

gyrochronology
compared with 
obserations.

A Surprise: Spindown Stalls In 
Old Stars!

Models 
Calibrated
On Clusters 
1-2 Gyr 
Old…

Predict 
Rotation
Periods 
Longer Than 
The Data

Clock Stops Earlier 
At Higher Mass



Gaia and Gyrochronology

 DIRECT: Young Populations & Binaries
Short Period and Active Stars Will Be Detected As Gaia 

Variable Stars
 INDIRECT: Gaia Radii + TESS/K2/Kepler Seismology and Rotation

=> Large Sample of Direct Age Calibrators for Field Star Gyro
 VERDICT FOR NOW: 

Useful Age Diagnostic for Stars More Active than the Sun, esp. 
KM



Binary Star Evolution And Gaia

Geller+ 2015:  “Oddballs” Are Common in M67
Milliman+ 2016: Numerous 
Binary Evolution Products in NGC 6791

Yes,
They’re
Members

Yes,
They’re
Members

This is what real Gaia cluster
CMDs will look like…



An Example: Young α-rich 
giants in the solar 
neighborhood

 Martig+ 2015: 14/241 high-
α stars have ages < 5 Gyr

 Could be evolved blue 
stragglers…

 But the rate is then high, 
and must be accounted 
for in other samples!



CONCLUSIONS

 Stellar Astrophysics is Being Radically Transformed
Asteroseismology, Rotation, Large Spectroscopic Surveys

 Gaia will have a profound impact, especially when combined 
with other constraints

 Seismology can provide masses for large samples of stars
POWERFUL combination with Gaia

 Existing isochones will need to be revised
 Stay tuned: we will have a very good idea about the validity of 

our age framework in ~ 1 year!
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