Ages in the Gaia Sky

MARC PINSONNEAULT OHIO STATE UNIVERSITY, DEPT. OF ASTRONOMY

Collaborators: Courtney Epstein Jamie Tayar Jennifer van Saders Joel Zinn

Why Study Ages?

- Ages are crucial for studies of the origin and evolution of planets, stars and galaxies
- Detailed studies of local populations (near-field cosmology) complement high-redshift studies of galaxy formation

The Age Problem

Intrinsic Model Dependence
 Cannot Be Directly Calibrated
 Indirectly Inferred
 Strong Systematic Errors and Biases

NYTimes:

4 Sisters, 40 Years

The Ecology of Chronology

- Measure Stellar Observables
- Use Models to Relate Observables to Ages
- Apply Population and Selection Corrections

Important Consequence:

Even with Perfect Distances, Ages Will Be Limited in Precision!

Inferring Errors is Extremely Complex

When an astronomer says "The age is 100 Myr +/-10...

Ce n'est pas une incertitude appropriée

EXAMPLE:

For the upper MS there are 3 age scales

No overshoot or rotation Overshoot (various amounts) Rotation

Which produce similar rank-ordering of ages but very different scales...

The Revised Hipparcos CMD

Three Domains For Stellar Age Techniques

Guede et al. 2015 – Gaia Age Precision Simulations, D < 1 kpc

Y² Isochrones (Demarque et al. 2001)

The Classic Case: Star Clusters

The Lesson of the Pleiades and Hipparcos

- We have a rich web of information about stars
- Missions such as Hipparcos & Gaia add to our knowledge
- They don't replace things that we already knew

Brown+ 2016

The Promise of Gaia

- An enormous increase in the quantity and quality of star cluster data
- Field star ages for bulk populations a realistic prospect...
- ► TESTS OF MODELS
 - Masses (Binaries, Seismology)
 - Abundances (Spectra)
 - Photometry and Extinction

Van Leeuwen+2017

BUT: Unlikely to significantly revise inferred properties of well-studied systems

The Most Interesting Failure Modes

Overshoot vs. Rotational Mixing on the Upper MS

"Hidden" Chemical Trends

Example: Variable He Enrichment or Trends Not Tied to Metals

 Unusual Stellar Evolution Channels (Interacting Binaries)

Mass Loss

Spectroscopy and Seismology: Perfect Together!

- Stellar pulsation frequencies encode fundamental data about the global and internal properties of stars
- Spectroscopy is uniquely powerful for measuring detailed abundance data AND gives essential T_{eff} + log g + RV data
- APOGEE-Kepler Asteroseismology Collaboration (APOKASC)
 - DR10: 1,918 giants with spectra and asteroseismic parameters
 - PINSONNEAULT+ 2014
 - DR13: 7,000+ targets
 PINSONNEAULT+2017 (giant catalog)

APOGEE

- High resolution (R~22,000) full Hband spectra
- ~230 science fibers per 6 square degree field
- S/N=100 in 3 hrs, H=12.2
- Automated Pipeline Analysis (Garcia Perez et al. 2016, Majewski et al. 2015, Holtman et al. 2015....)

Asteroseismology

A Kepler "concert" of Red Giant Stars

Can be Used to Infer Mass, Radius and Evolutionary State When Combined with Spectroscopy

The Kepler Red Giant Population

Asteroseismology + Spectroscopy ⇒Log g, Teff, R, M and Evolutionary State

Powerful Complement To Parallaxes: Mass + HRD Position

Scaling Relations: Mass from Frequencies

► Two most basic observables: ► Frequency of maximum power $v_{max} \sim M/R^2$ Mean frequency spacing $\Delta v^2 \sim M/R^3$

APOKASC 1 Mass Data in a Narrow Metallicity Range

Pinsonneault et al. 2014

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$$
$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}.$$

BUT: MASSES NEED TO BE CALIBRATED

Open Cluster Tests of Scaling Relations

LEFT: Scaling Relation Masses (points) scatter above the true cluster mean (lines)

> ~2 Gyr ~ 4 Gyr ~ 8 Gyr

RIGHT: Theoretically Predicted Mass Corrections (Serenelli 2017) Are of the Right Sign and Size

Improved Mass Agreement with Corrections

 $\frac{M_{TRUE}}{M_{CORR}} = 1.033 + /-0.020$

CAUTION: Larger Difference with Binaries (Gaulme et al. 2016)

Distance can be used to independently test the two scalings

Scaling Relations in Clusters

► For Clusters: ► m + (m-M) + A_x = L ► L + T_{eff} = R ⇒ M ~ $v_{max} R^2 T_{eff}^{0.5}$ ⇒ M ~ $\Delta v^2 R^3$

With Gaia we can do this test for thousands of field giants and with very high precision for clusters....

Asteroseismology Illuminates Defects in Our Isochrones 3,000 1st Ascent Giants With Masses

0.15 0.30 0.45

-0.60 - 0.45 - 0.30 - 0.15 0.00

[Fe/H]

Compare Isochrone-Predicted Teff With Actual Data

Result: A Strong [Fe/H] Dependent Offset

Tayar+ 2017 (astro-ph/1704.01164)

Isochrone Offsets Induce Large Age Shifts in Red Giants

APOKASC Calibrates C/N and Overall Spectra As Mass Diagnostics

Lower RGB Similar to Upper RGB; Little mixing near solar [Fe/H]

Martig+ 2016 Ness+ 2016

12

9

5

3

2

Gyrochronology and Lower MS Ages

- Ages based on nuclear evolution are intrinsically imprecise on the lower main sequence
- Low mass stars spin down as they age:
 - Retains precision even in low mass stars

Epstein & Pinsonneault 2014: Isochrone Vs. Gyro Compared, Lower Main Sequence

Gyrochronology In Theory

IMPORTANT POINT:

INTRINSICALLY A SECOND ORDER AGE DIAGNOSTIC

Rotation Correlated With Age Derived From Other Methods!

Epstein & Pinsonneault 2014

Young

Old

Gyro In Practice: Promise and Pitfalls

We have developed an enormous database of rotation periods

Progress driven by space and ground based transit surveys

~625 Myr

~125 Myr

Well-Defined Rotation-Mass-Age Relations, Young Systems (Rebull+ 2016, 2017; Douglas+ 2017)

Clock Stops Earlier At Higher Mass

A Surprise: Spindown Stalls In Old Stars!

Models Calibrated On Clusters 1-2 Gyr Old...

Predict Rotation Periods Longer Than The Data

van Saders et al. 2016 nature

Gaia and Gyrochronology

DIRECT: Young Populations & Binaries

- Short Period and Active Stars Will Be Detected As Gaia Variable Stars
- INDIRECT: Gaia Radii + TESS/K2/Kepler Seismology and Rotation => Large Sample of Direct Age Calibrators for Field Star Gyro
 VERDICT FOR NOW:
 - Useful Age Diagnostic for Stars More Active than the Sun, esp. KM

Binary Star Evolution And Gaia

This is what real Gaia cluster CMDs will look like...

Geller+ 2015: "Oddballs" Are Common in M67

Milliman+ 2016: Numerous Binary Evolution Products in NGC 6791

An Example: Young α-rich giants in the solar neighborhood

- Martig+ 2015: 14/241 high-α stars have ages < 5 Gyr
- Could be evolved blue stragglers...
- But the rate is then high, and must be accounted for in other samples!

CONCLUSIONS

Stellar Astrophysics is Being Radically Transformed

- Asteroseismology, Rotation, Large Spectroscopic Surveys
- Gaia will have a profound impact, especially when combined with other constraints
- Seismology can provide masses for large samples of stars
 - POWERFUL combination with Gaia
- Existing isochones will need to be revised
- Stay tuned: we will have a very good idea about the validity of our age framework in ~ 1 year!