VLBI and Gaia: a new window to study physics of active galactic nuclei

Leonid Petrov
Yuri Kovalev
Alexandr Plavin

Astrogeo Center, USA
Astro Space Center, Russia
Moscow Institute of Physics and Technology, Russia
Data

VLBI Radio Fundamental Catalogue (13,036 sources) on 2017.04.15 and Gaia DR1 (1.14 · 10^9 objects)

Green: 6,907 VLBI/Gaia matches \(P < 0.0002 \)

Blue: VLBI sources without Gaia matches
VLBI and Gaia position uncertainties

Median error: **VLBI RFC**: 0.5 mas
Median error: **Gaia DR1**: 2.2 mas
There are \textbf{486 outliers} (7\%) at significance level 99\%.

Outliers range: 1–400 mas (median: 10 mas).
Main finding: no preference at $0^\circ, 180^\circ$ (VLBI declination errors)
No deviation from the isotropy.
How the AGNs look like at mas scale?

Generic property: core-jet morphology:

- Images are available for 74% sources (the number will increase)
- Jets can be reliably determined at 50% images (can be improved)

AGNs are intrinsically asymmetric sources!
Distribution of AGN jet directions in the VLBI/Gaia sample

No deviation from the isotropy
Distribution of VLBI/Gaia position offset angles with respect to jet direction

VLBI/Gaia offsets prefer directions along the jet!!

The pattern can be explained only by core-jet morphology.
VLBI/Gaia differences: explanation

Facts:

- There are 7% sources with significant VLBI/Gaia offsets (1–400 mas).
- While position angles of VLBI/Gaia offsets and jet position angles, taken separately, are distributed uniformly, their difference has significant peaks at 0 and 180 degrees.

To explain the pattern, systematic shifts VLBI/Gaia at 1–2 mas level are required.

Possible explanations:

- **Blame radio:** core-shift;
- **Blame radio:** the contribution of source structure to VLBI positions;
- **Praise Gaia:** the contribution of optical jets or the accretion disks to centroid positions.
Core-shift

- Core is the optically thick part of the jet;
- Core centroid is shifted with respect to the jet base;
- The shift is frequency dependent;
- Results of core-shift measurements:
 - Contribution to 8 GHz positions: ~ 0.2 mas;
 - Contribution to dual-band positions: 0.02–0.05 mas.

Conclusion: the effect is too small
Contribution of source structure to VLBI position

- VLBI does not measure position of the centroid
- Source structure contribution depends on image Fourier transform
- The most compact image component has the greatest impact on position
- Examples:

 - Test VLBI experiment processed with source structure contribution applied:
 - Median VLBI position bias: 0.06 mas
 - Median image centroid offset: 0.25 mas

Conclusion: the effect is too small
Contribution of optical structure

There are over 20 known optical jets with sizes $0.5-20''$.

At $z=0.07$, visible optical jet of J1145+1936 would shift centroid at 5 mas.

At $z=0.3$, visible optical jet of J1223+1230 would shift centroid at 1.2 mas.

Conclusion: known optical jets at farther distance can cause centroid shifts at 1–2 mas level.
Optical jets interpretation

Dilemma:

- large optical jet that we see, do not affect Gaia.
- small optical jet that we do not see, affect Gaia.

What are observational consequences?

Image centroid and, therefore VLBI/Gaia offsets will change due to

1. optical variability and
2. jet kinematics.

1959+650 light curve
Jet kinematics

Core ejects components, they are moving, fainting, disappearing

1226+023 at 15.3 GHz, MOJAVE Survey

Epoch (years) Lister et al. (2009)

J1828+4844 centroid evolution

Centroid offset (mas)

Time (years)
Centroid of a core-jet morphology

\[C_{\text{image}} = \frac{C_{\text{core}} F_{\text{core}}}{F_{\text{core}} + F_{\text{jet}} + F_{\text{stars}}} + \frac{C_{\text{jet}} F_{\text{jet}}}{F_{\text{core}} + F_{\text{jet}} + F_{\text{stars}}} + \frac{C_{\text{stars}} F_{\text{stars}}}{F_{\text{core}} + F_{\text{jet}} + F_{\text{stars}}} \]
Direction of the centroid change after a flare

- **Oj+i**: Flare happened at the jet
- **Oj-i**: Flare happened at the accretion disk
- **Oj+d**: Flare happened at the core or accretion disk
- **Oj-d**: Flare happened at the core and the jet
Correlation of the centroid wander and light curve

1. Two component stationary model

\[C_f(t) = F(0) \frac{O_j(t) - O_j(0)}{F(t) - F(0)} + O_j(t) \]

\[F_f(t) = F(0) \frac{O_j(0)}{C_x(t)} \]

We can locate the position of the flaring component and its flux density; stability of \(C_x(t) \) provides a stationarity test.
Correlation of the centroid wander and light curve

2. A general non-stationary model

\[
O_j(t) = \sum_i v(t - t_{0i}) F_j(t) + C_i(t_{0i}) F_j(t_{0i}) \]

\[
F_t(t) = F_c(t) + \sum_i F_j(t)
\]

\[
F_j(t) = 0 \quad \forall \, t < t_{0i}
\]

Not solvable without a use of addition information

3. Two-component non-stationary case

\[
F_j(t) = \frac{O_j(t) F_t(t) - O_j(t_b) F_t(t_b)}{v(t - t_b)} + F_j(t_b)
\]

\[
F_c(t) = F_t(t) - F_j(t_b)
\]

\[
d_j(t) = d(t_b) + v(t - t_b)
\]

If ejection start time \(t_b \) and component speed \(v \) are known, we can

- locate the **position** of the jet component
- determine its **flux density** as function of time
- determine **flux density** of the core as a function of time
AGN position jitter

A consequence of VLBI/Gaia offset optical jet interpretation is prediction of AGN jitter in Gaia time series at a level of several milliarcseconds.

A jitter is

a) stochastic;
b) confined to a small region;
c) correlated with light curve;
d) occurs primarily along the jet;
e) mean with respect to VLBI position is not zero.

Naive model: an AGNs is point-like and stable;

Realistic model: AGN has variable structure and it has jitter.

In VLBI world we got used to that.
How to live with AGN position jitter?

Two cases:

- Radio-loud AGNs:
 weak remedy: determine VLBI, jet direction, $O_j(t)$, $O_t(t)$,
 strong remedy: centroid modeling, determination of the invariant core;

- AGNs without detected parsec-scale emission:
 determination of jet direction for position jitter;

Good news: position jitter converges with time to some (biased) mean position.
Future observing programs

- improve VLBI positions of ~ 6000 matches at $\delta > -40^\circ$ and get jet directions. Goal: 0.2 mas. Status: pending.

- improve VLBI positions of ~ 2000 matches at $\delta < -40^\circ$, get jet directions. Goal: 0.4 mas. Status: approved.

Summary:

- VLBI/Gaia residuals have systematics caused by core-jet morphology;
- VLBI position is related to the most compact detail, an AGN core;
- Gaia position is related to the image centroid within the PSF;
- The most plausible explanation: optical jet at scales 1–200 mas;
- Consequence of the optical jet presence: source position jitter;
- Position jitter + light curve = optical resolution at mas scale;
- Can determine the region of optical flares its kinematics and its flux density.

References: arxiv.org/abs 1611.02630, 1611.02632, 1870281
http://astrog eo.org/rfc