The Metallicity Distribution Function of the disc with Gaia DR1+RAVE

Georges Kordopatis

Laboratoire Lagrange, Observatoire de la Côte d'Azur

Importance of the MDF (and link with V_d)

- Metallicity distribution function:
 - Radial and Vertical changes
 - ≻Integrated star formation history
 - Hints of Radial migration (orbits desired)
 - Related to scale-lengths and scale-heights of the discs
 - Thick Disc formation scenarios
 - Cloud collapse?
 - Accretion of stars?

→ How does the MDF change when Gaia-DR1 is taken into account?

RAVE: 5th public data release

- Intermediate resolution (R~7500)
- 457 588 stars,
- 520 781 spectra (DR4: 482 430 stars)
- 9 <I< 12 mag

Database:

- ✓ Radial velocities
- ✓ Spectral morphological flags
- \checkmark T_{eff}, logg, [M/H]
- ✓ Line-of-sight Distances
- ✓ Mg, Al, Si, Ti, Ni, Fe
- ✓ Photometry:
 2MASS, APASS
- ✓ Proper motions: UCAC4, UCAC5, HSOY, PPMXL, Tycho-2, TGAS

Kunder, Kordopatis et al. 2017

RAVE DR5: <u>selection function</u>

Wojno, Kordopatis et al. (2017)

Kinematically and chemically unbiased for 9<I<12

RAVE DR5: Corrected MDF

RAVE-TGAS catalogue

215 590 targets

RAVE-TGAS catalogue Astraatmadja & Bailer-Jones distances

RAVE-TGAS catalogue Astraatmadja & Bailer-Jones distances

RAVE-TGAS catalogue Astraatmadja & Bailer-Jones distances

New distances for the RAVE-TGAS catalogue

- New distances (c.f. P. McMillan's poster C22)
 - \rightarrow Use of T_{eff}, logg, [M/H] + ϖ + underlying Galactic model
 - \succ 200% better than RAVE DR5 alone
 - \succ 55% better than TGAS alone (logg<3.5)

New distances for the RAVE-TGAS catalogue

New distances for the RAVE-TGAS catalogue

Metallicity Distribution Function

- 5 Radial distance bins:
 - ➢ 6<R<7 kpc, 7<R<8 kpc, 8<R<9 kpc, 9<R<10 kpc</p>
- 5 Vertical bins:
 - > 0 < |Z| < 0.25 kpc, 0.25 < |Z| < 0.5 kpc, 0.5 < |Z| < 1 kpc, 1 < |Z| < 2 kpc, 2 < |Z| < 3 kpc

• UCAC5 (Zacharias et al. 2017): Improved p.m. for the TGAS stars, and new pm for the rest of the catalogue, based on Gaia-DR1 positions

Metallicity Distribution Function

- MDFs are not Gaussian, even for a single population.
 - Multi-Gaussian decomposition,
 - chemical ($[\alpha/Fe]$) decomposition,
 - kinematic decomposition

RAVE-DR5(McM) + UCAC5

RAVE-DR5(McM) + UCAC5

MDFs at 7<R<8 kpc & 8<R<9kpc very similar

- MDFs at 7<R<8 kpc & 8<R<9kpc very similar
- outside this range biases exist, but vertical gradients excluding the closest bins agree

→ Schlesinger et al. 2014 (using SEGUE's G dwarfs): -0.243 ± 0.05 dex/kpc

- MDFs at 7<R<8 kpc & 8<R<9kpc very similar
- outside this range biases exist, but vertical gradients excluding the closest bins agree
 - → Schlesinger et al. 2014 (using SEGUE's G dwarfs): -0.243 ± 0.05 dex/kpc
- signs of flaring of the thin disc at the outer regions

- MDFs at 7<R<8 kpc & 8<R<9kpc very similar
- outside this range biases exist, but vertical gradients excluding the closest bins agree
 - → Schlesinger et al. 2014 (using SEGUE's G dwarfs): -0.243 ± 0.05 dex/kpc
- signs of flaring of the thin disc at the outer regions

Compared to pre-Gaia results: smoother gradients, very well characterised correlations between V_{ϕ} and [M/H], no indication of inversion of the skewness (see Hayden et al. 2015), but need to correct for the selection function

SMR stars seen up to 1kpc from the plane, within 6<R<9 kpc Stars with [M/H]~0.4 dex → formed at very small Galactocentric radii

Super-Solar metallicity stars -> Eccentricity determination

Same procedure as in Kordopatis et al. 2015

3 discs:
$$\rho(R, z) = \frac{\Sigma_0}{2z_d} \exp\left[-\left(\frac{R_h}{R} + \frac{R}{R_d} + \frac{|z|}{z_d}\right)\right]$$

2 spheroids: $\rho(R,z) = rac{
ho_0}{m^{\gamma}(a+m)^{eta-\gamma}} \exp[-(mr_0/r_{\rm cut})^2]$

 $m(R,z) \equiv \sqrt{(R/r_0)^2 + (z/qr_0)^2}$

Table 1. Parameters for the adopted mass model of the Milky Way.

Disc	Thick	Thin	Gas
$\Sigma_0 ({ m M}_\odot { m kpc}^{-2})$	$7.30 imes 10^7$	1.11×10^{9}	1.14×10^{8}
$R_{\rm d}$ (kpc)	2.4	2.4	4.8
$z_{\rm d}$ (kpc)	1.0	0.36	0.04
$R_{\rm h}$ (kpc)	0	0	4
Spheroid	Dark halo	Bulge	
$\rho_0 (\mathrm{M}_{\odot} \mathrm{kpc}^{-3})$	$1.26 imes 10^9$	7.56×10^{8}	
q	0.8	0.6	
γ	-2	1.8	
β	2.21	1.8	
r_0 (kpc)	1.09	1	
r _{cut} (kpc)	1000	1.9	

(Dehnen & Binney 98, Binney 12)

Super-Solar metallicity stars -> Eccentricity determination

Same procedure as in Kordopatis et al. 2015

3 discs: $\rho(R, z) = \frac{\Sigma_0}{2z_d} \exp\left[-\left(\frac{R_h}{R} + \frac{R}{R_d} + \frac{|z|}{z_d}\right)\right]$

2 spheroids: $\rho(R,z) = rac{
ho_0}{m^{\gamma}(a+m)^{\beta-\gamma}} \exp[-(mr_0/r_{\rm cut})^2]$

$$m(R,z)\equiv\sqrt{(R/r_0)^2+(z/qr_0)^2}$$

Table 1. Parameters for the adopted mass model of the Milky Way.

Disc	Thick	Thin	Gas
$\Sigma_0 (\mathrm{M}_\odot \mathrm{kpc}^{-2})$	$7.30 imes 10^7$	1.11×10^9	1.14×10^8
$R_{\rm d}$ (kpc)	2.4	2.4	4.8
$z_{\rm d}~({ m kpc})$	1.0	0.36	0.04
$R_{ m h}~(m kpc)$	0	0	4
Spheroid	Dark halo	Bulge	
$ ho_0 (\mathrm{M}_\odot \mathrm{kpc}^{-3})$	$1.26 imes 10^9$	7.56×10^{8}	
q	0.8	0.6	
γ	-2	1.8	
β	2.21	1.8	
r_0 (kpc)	1.09	1	
$r_{\rm cut}~({ m kpc})$	1000	1.9	

(Dehnen & Binney 98, Binney 12)

|Z|<0.25 kpc

Distances DR5+

• ISM's metallicity gradient: ∂ [M/H]/ ∂ R ~ -0.06 dex kpc⁻¹ (Smartt & Rolleston97; Balser+11...) >Stars born well inside R_o.

Radial migration: (Sellwood&Binney02...)

(1)

(2)

Churning: Co-rotation resonances Δe/Δt ~ 0

Blurring: Lindblad resonances ≻ Δe/Δt ≠ 0

Distances DR5+ Distances DR5

Wyse, Hawkins, Kordopatis, Ruchti (in prep)

- ~40 stars observed with APO/ARCES (R=31 500)
- Hints of larger scatter in [Si/Fe] for lowest orbital eccentricity
 - Need larger samples, plus model predictions

Conclusions

- New distances and updated pm allowed a re-analysis of existent data-sets
- General trends well identified in previous works
 - SMR stars on low-e confirmed
 - Correlation between [M/H]-V_{\varphi} confirms existence of thick disc in the inner disc and absence of it at the outer.
- Skewness study to be performed taking into account the completeness fraction.
- Decomposition into thin and thick disc & age analysis with RAVE data is difficult, but in progress (see J. Wojno's poster)

Ages + thin & thick disc decomposition

See **J. Wojno**'s poster (C49) Ages by P. McMillan

The age-metallicity relation in the solar neighbourhood as seen by RAVE

Jennifer Wojno¹, Georges Kordopatis², Matthias Steinmetz¹, Paul McMillan³, and the RAVE collaboration

1 Leibniz-Institut für Astrophysik Potsdam (AIP), Germany 2 Laboratoire Lagrange, Université Côte d'Azur, Observatoire de la Côte d'Azur, France 3 Lund Observatory, Lund University, Sweden

0.5< |Z|<1

0.25< |Z|<0.5

Distances DR5+ Distances DR5 Cannon

|Z|<0.25 kpc₃₄