GaiaNIR A Future All Sky Astrometry Mission

DAVID HOBBS LUND OBSERVATORY

ERIK HØG NIELS BOHR INSTITUTE

Motivation For GaiaNIR

- A weakness of Gaia is that it only operates at optical wavelengths.
- The Galactic centre and spiral arm regions are obscured by interstellar extinction.
- Can overcome this switching to the NIR but this was not possible with CCDs ⇒ new detectors.
- To scan the entire sky & measure global absolute parallaxes we need rotation ⇒ detectors correct for rotation.

Technological challenge:

- Optical and Near-Infra-Red (NIR).
- A scanning mission needs Time Delayed Integration (TDI) mode or similar to compensate for rotation - does not exist in NIR !
- Detector read out noise must be low.

IR image from the Two Micron All-Sky Survey (image G. Kopan, R. Hurt)

Science Cases

Three main scientific topics for a new Gaia-like mission:

Astrometry:

- 1. Adding NIR astrometry and photometry to probe obscured regions of the Galaxy and allow us to observe intrinsically red objects.
- A new mission at a 20 yr time interval would give PMs 14-20 times better & parallaxes √2 times better, opening many new science cases.
- 3. The slowly degrading accuracy of the Gaia optical reference frame and catalogue needs to be maintained.

Proposal title: GaiaNIR Combining optical and Near-Infra-Red (NIR) capabilities with Time-Delay-Integration (TDI) sensors for a future Gaia-like mission.

PI: Dr. David Hobbs, Lund Observatory, Box 43, SE-221 00 Lund, Sweden. Email: david@astro.lu.se. Tel.: +46-46-22 21573

Core team members: D. Hobbs A. Brown A. Mora C. Crowley N. Hambly J. Portell C. Fabricius M. Davidson Proposal writers:	The following minimum team is needed to initiate the project. Lund Observatory, Sweden. Leiden Observatory, Holland. Aurora Technology B.V., Spain. HE Space Operations B.V., Spain. University of Edinburgh, UK. Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. University of Edinburgh, UK. See Appendix A.
Other supporting scientists:	See Appendix B.
Senior science advisor's: E. Høg L. Lindegren C. Joedi S. Klioner F. Mignard	Copenhagen University (Retired), Denmark. Lund Observatory, Sweden. Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. Lohrmann Observatory, Germany. Observatoire de la Côte d'Azur, France.

Fig. 1: Left is an IR image from the Two Micron All-Sky Survey (image G. Kopan, R. Hart) while on the right an artist's concept of the Gaia mission superimposed on an optical image, (Image ESA). Images not to scale.

Measurement Concept

 $\sigma_{\mu_{\alpha}*} = \frac{\sqrt{\sigma_{\alpha_{\rm N}^*}^2 + \sigma_{\alpha_{\rm G}^*}^2}}{t_{\rm N} - t_{\rm G}} = \frac{\sqrt{25^2 + 25^2}}{20} \sim 1.77 \ \mu \text{as yr}^{-1} , \quad \sigma_{\mu_{\delta}} = \frac{\sqrt{\sigma_{\delta_{\rm N}}^2 + \sigma_{\delta_{\rm G}}^2}}{t_{\rm N} - t_{\rm G}} = \frac{\sqrt{25^2 + 25^2}}{20} \sim 1.77 \ \mu \text{as yr}^{-1}$

GaiaNIR - will do all sky global astrometry in the **visible** and **NIR**.

A separation of 20 years will allow for very accurate PMs. An improvement by a factor of 14 in PM's for two 5 yr missions or a factor of 20 for two 10 yr missions compared to Gaia's nominal 25 µas yr⁻¹.

20 yr separation

Stars only seen in NIR will not benefit from this improvement

First Epoch Gaia 5yr (2015-20)

 $\sigma_{\mu_{\alpha}*} = 25 \ \mu \text{as yr}^{-1} \ G = 15$

10 kpc

From Lindegren

 $A_V = 0$ $A_V = 5 mag$

20%

20%

Hipparcos r ~ 100pc

10 kpc

From Lindegren

GaiaNIR (5yr) +Gaia (5yr) $A_V = 5 \text{ mag}$

20%

20%

v = 0

Hipparcos r ~ 100pc

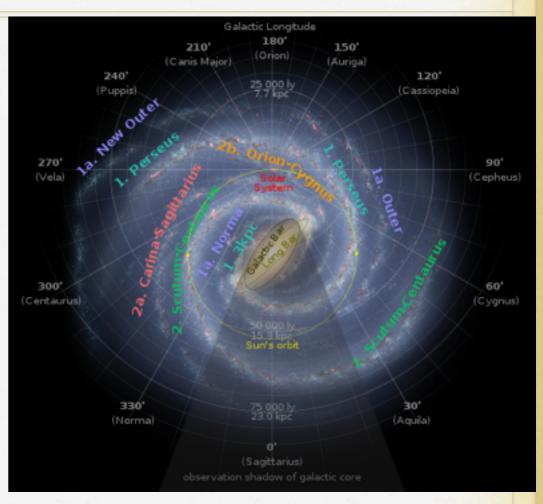
GaiaNIR (10yr) +Gaia (10yr)

GaiaNIR (5yr) +Gaia (5yr) $A_V = 5 \text{ mag}$

20%

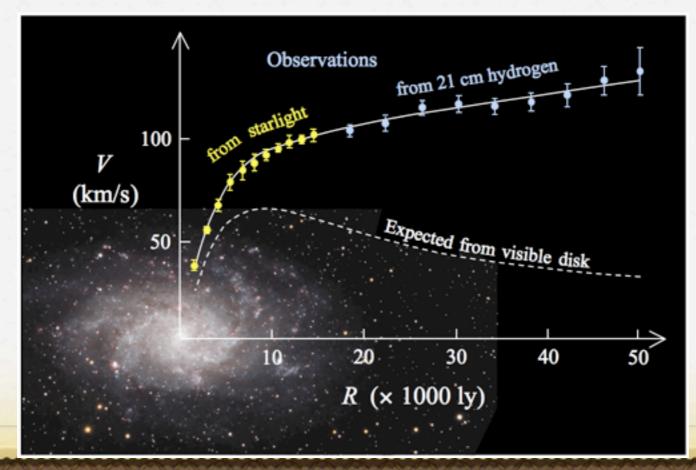
20%

v = 0


Hipparcos r ~ 100pc

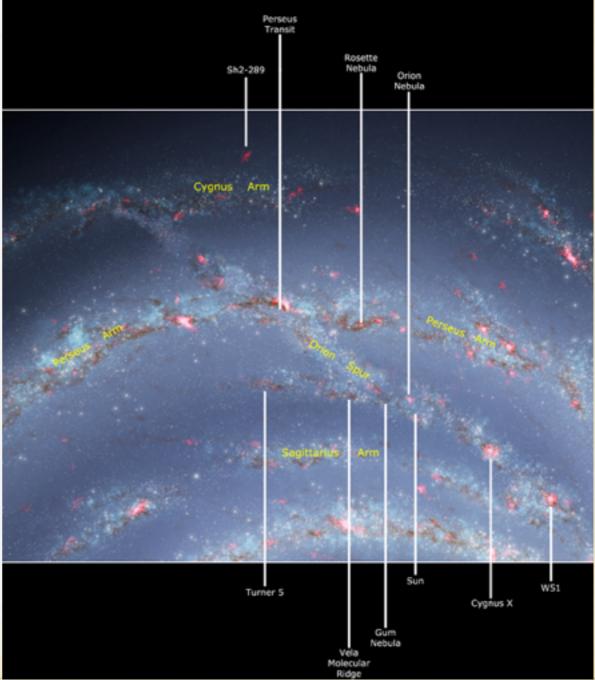
From Lindegren

10 kpc


1. NIR Astrometry

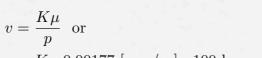
- The bulge and bar regions need NIR.
 - Radial migration at the interface is hidden by dust
 - Stellar bar may have created a peanut-shaped pseudo-bulge PMs and parallaxes are needed.
 - Star formation in the bar affects DM density profile in the Galactic Centre.
 - Bar may interact with the Halo to perturb the Halo DM profile.
- Central black hole region
 - Other surveys (e.g. JASMIN, GRAVITY) may supply first epoch measurements but only in small regions.

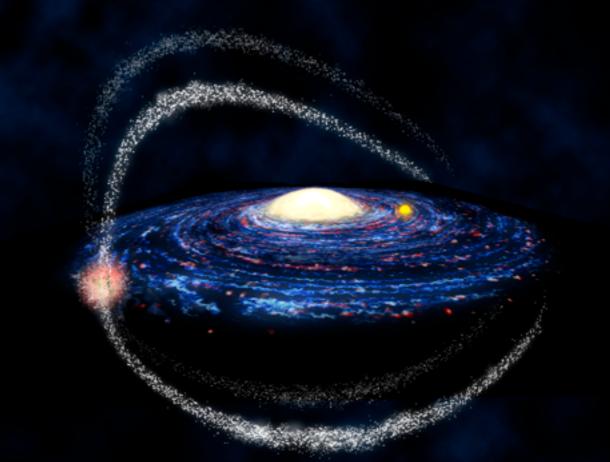
1. NIR Astrometry


- Galactic rotation curve and dark matter.
 - GaiaNIR is needed to unveil the inner disk which is not well known.
 - Does the thin disc have DM components.
 - Have spiral arms their own DM components.
 - VLBI measurements of 100's of masers probe the rotation curve but GaiaNIR would vastly improve this.

1. NIR Astrometry

- For the spiral arms GaiaNIR:
 - could map them in detail astrometry for 100's of millions of objects.
 - could reveal the internal dynamics & bulk dynamics of young clusters.
 - allow these dusty star forming regions to be globally surveyed for the 1st time.


Many other science cases: clusters, brown dwarfs, cool white dwarfs, free floating planets, PL relations of red Mira's, etc.


2. Improved PM & Parallax

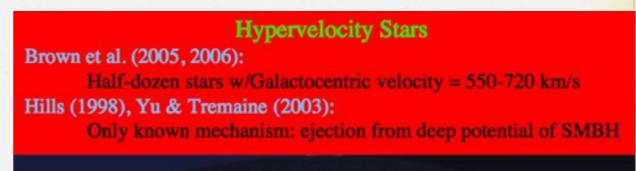
• PMs from GaiaNIR + Gaia would give tangential velocities of >1 km/s at 100 kpc allowing structure in streams and dwarf galaxies in the Halo to be resolved.

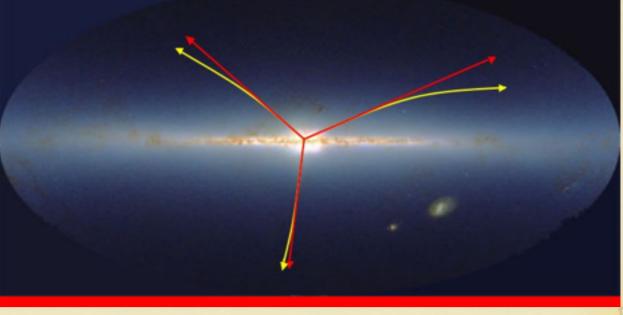
- PMs may be used to detect gaps in streams revealing DM sub-halo structure.
- PMs in outer Halo could better estimate the mass of the Galaxy.
- Finally, can PMs shed more light on the cusped or a flat dark matter Halo problem?

 $v = K * 0.00177 \; [\rm{mas/yr}] * 100 \; \rm{kpc} \sim 0.85 \; [\rm{km/s}]$

An artist's impression of the four tails of the Sagittarius Dwarf Galaxy Figure credit: Amanda Smith, Institute of Astronomy, University of Cambridge

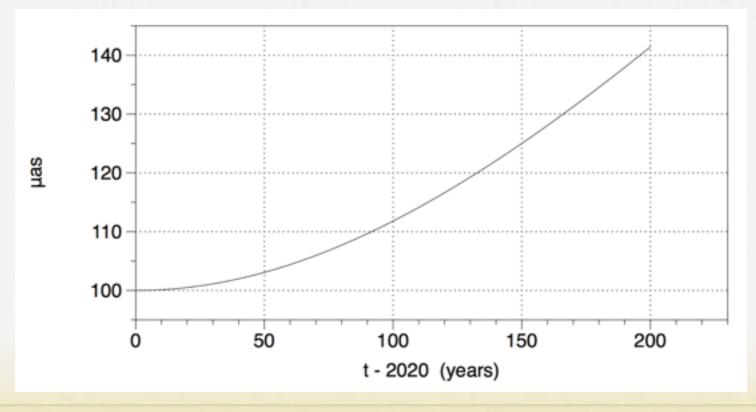
2. Improved PM & Parallax


- Internal dynamics of local group galaxies (e.g. M31), dwarf spheroids, globular clusters, LMC & SMC improved.
- Map the DM sub-structure in the local group.
- Examples of dynamics within the local group:
 - Using PMs to determine rotational parallaxes to M31, M33 and other local galaxies.
 - Dynamical measurements of the mass distribution of M31.
 - Probe the internal kinematics of classical dwarf spheroids (dSph's).

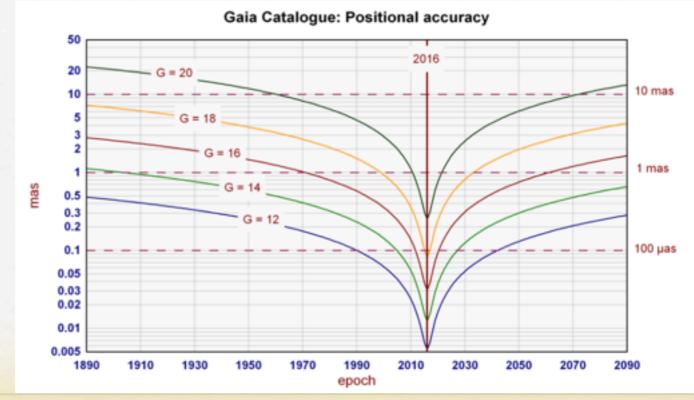


2. Improved PM & Parallax

 Hyper-velocity stars need accurate PMs and V_R to trace their origin (GC or Magellanic clouds). Constraints on axis ratios & orientation of triaxial models of Galactic potential.


- Exoplanet & binary detectable period is 30 - 40 yr with GaiaNIR + Gaia (Saturn P=29 yr).
- Solar System orbits for >100,000 objects
 greatly improved if based on 2 missions.

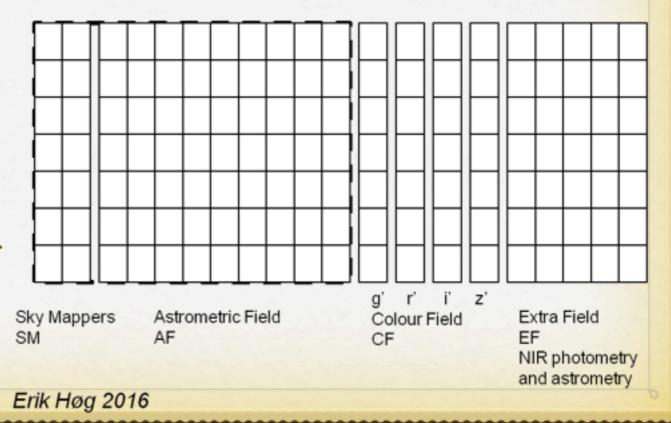
3. RF & Catalogue Ageing


- The RF will degrade with time. Eg. Individual primary sources are accurate to 100 μas and RF spin accurate to < 0.5 μas yr⁻¹.
- This very small drift is not a problem but over time other systematic PMs patterns will show up.
- The largest is the Galactic-centric acceleration of ~4.3 µas yr⁻¹ which can be (largely) accounted for but others also exist.

The positional accuracy of the Gaia reference frame over time. (Image F. Mignard).

3. RF & Catalogue Ageing

- The positional accuracy of the catalogue will degrade over time due to PM errors which will eventually require a new Gaia-like mission to maintain the catalogue.
- Expand the Gaia optical RF to the NIR increasing its density in obscured regions and linking this to the ICRF.
- This on its own is a strong science case due to the need to maintain dense and accurate reference grids in both optical & NIR for future observational astronomy.



The positional accuracy of the Gaia catalogue over time. (Image F. Mignard).

Detectors & Filters

- ESA study of NIR sensors (400–2000 nm) with TDI mode.
 - HgCdTe (MCT) materials are most promising for NIR sensors.
 - Readout noise (off-chip summing of each pixel) is too large.
 - Charge generation in MCT silicon substrate for charge accumulation and transfer to next pixel readout only occurs once at the end of pixel transfers.
 - Achievable astrometric accuracy ?
 - Cooling strategy must be passive and needs to be assessed (100K).
 - Can the focal plane consist of just one type of detector or (CCDs + NIR sensors).
- Filter photometry 4-band (7-band ?) similar to Sloan bands, g´, r´, i´, z´ (j´, h, k).
- No Spectrograph !

A focal plane composed of optical and NIR detectors

What Happens Next?

- Mission science requirements are being specified over the summer scientific Expert Group.
- In the Autumn ESA will use the requirements at their Concurrent Design Facility (CDF) to make a preliminary evaluation of the concept resulting is a satellite design.
- The most important challenges of the mission will be identified for further technical study:
 - Detector type for Optical-NIR (together or separate).
 - TDI detectors for NIR.
 - De-scan mechanisms ?
 - Step-stare mission concept (with 2 or 3 FoVs) ?
 - BA variations and BA monitors.
 - Can we get better accuracy then Gaia ?

• Hopefully we proceed to an M-class mission proposal - M7 ?

