A box full of chocolates: Structure of the nearby stellar halo with Gaia & RAVE

Amina Helmi

 faculty of mathematics and natural sciences kapteyn astronomical institute

Stellar halo: treasure trove of merger relics

- Cosmological model's characteristic is hierarchical growth: mergers → how important for Milky Way?
- Disrupted galaxies/debris naturally in a stellar halo:
 → merger signatures: Substructures and tidal streams

snapshots: J. Gardner

The accretion history unveiled so far: The Galactic halo from SDSS/PanStarrs

Belokurov et al. 2006

Outer halo: R > 20 kpc

•Clear evidence of substructure

•Limited to high-surface brightness features (progenitors/time of events)

•Qualitatively consistent with expectations from Λ CDM (Helmi et al. 2011; Deason et al. 2014)

North Galactic Cap

 $h=0^0$

Nearby halo

Memory of origin: retained in the motions

- I00s of streams should cross Sun's vicinity
- So far.. two streams near the Sun from a galaxy disrupted very early on and a few more "hints" (Smith 2016)

Many more hiding...

How to find these?

- Clustering in conserved quantities
- A good dataset

The movie can be found at https://www.astro.rug.nl/~ahelmi/research/gaia/movie.html

angular momentum

Velocity space

 v_{z} (km s⁻¹)

Construction of a halo sample: TGAS x RAVE

- TGAS dataset is significant improvement, but need full phase-space information
 → cross-match to RAVE
- RAVE survey obtained spectra for 500k stars in southern sky: radial velocity; metallicity; spectrophotometric distance/parallax

Quality criteria for reliable parallaxes, RV and metallicity

- RAVE flags for reliable l.o.s.
 velocity and atmospheric
 parameters (SNR > 20,
 algoConv ≠ 1, ε_{RV} < 10 km/s,
 CorrCoeff > 10)
- -Use TGAS or RAVE parallax depending in smallest relative parallax error

-Only stars with ϵ_{ϖ}/ϖ < 0.3 and distance>100 pc

Stellar Heliocentric Radial Velocities REVE 50 km/s 50 km/s10 ... © The RAVE collaboration, background: ©2000 Axel Mellinger

 \rightarrow 210,263 stars in common

Construction of a halo sample

- <u>Metallicity cut [M/H] < -1.5 dex</u> to select preferentially halo \rightarrow selects of 2,013 stars
- Still contains stars with disk-like kinematics
- Fit 2 Gaussians in velocity and determine probability for each star to belong to either component
 → assign to halo or disk

Statistical tests and searches of substructure

Models predict

 several hundred moving groups or streams in Solar Neighbourhood

 → we search for excess clustering in velocity space with a correlation function

 substructure to be more easily apparent in Integrals of Motion space

 → we characterise the distribution, degree of clustering and establish significance

Velocity correlation function

• Very significant excess of pairs in data compared to random/smooth: for Δ < 20 km/s, 3.7 σ (82 pairs of stars); for 20 < Δ < 40 km/s: 8.8 σ

• Also for very large separations, there is a significant excess

Integrals of motion - space

Less bound halo stars \rightarrow very retrograde motions: 73% (for E > -1.3x10⁵ km²/s²) In randomised (re-shuffled) smooth distributions the probability of having so many loosely bound counter-rotating stars is < 0.1%

Integrals of motion - space

- Distribution is not smooth for more bound halo
- Significance of peaks/overdensities via comparison to randomised (re-shuffled) sets

For significance via comparison to randomised sets

- how often do we find in the "smooth" sets as many stars as in the data at given location in IoM space
- in 2D and in 3D (now including also Lperp = $(Lx^2 + Ly^2)^{1/2}$)

Integrals of motion – space

•Disk: low metallicity stars in this component (thick disk tail, e.g. Kordopatis et al 2014)

•VelHel-4: stars with disk-like kinematics but counter-rotating

•Structures at Lz ~-500 km/s kpc could be related to OmegaCen debris (Dinescu 2002)

The structures in velocity space

Not single structures, but several clumps or moving groups

The retrograde halo in context

The amount of substructure: comparison to cosmological simulations

- Simulations of halos purely built via accretion show excess on small and large separations
 of similar amplitude
 - some variation from halo to halo
 - \rightarrow Milky Way halo consistent with being fully built via accretion

Summary

Sample of over 1,000 halo stars (based on metallicity) with full phase-space coordinates from Gaia and RAVE

Velocity correlation function reveals significant excess of small scale structure

- at level consistent with cosmological simulations of halos purely built via accretion

Integrals of motion space is very rich in structure

- Less-bound halo stars predominantly retrograde (significance > 99.9%)
- Ten significant overdensities for more bound halo

Next steps:

- Characterization of the stars in the structures found, e.g. chemical abundances, ages
- Numerical simulations for orbits, infall times, link to other structures in the halo
- Use the full TGAS sample (10 x larger), i.e. without radial velocity information to identify other structures (poster J. Veljanoski)