Dynamical effects of the spiral arms on the velocity distribution of disc stars

Kohei Hattori (Michigan)

N. Gouda, T. Yano, N. Sakai, H. Tagawa (NAOJ)

$\frac{\text{velocity substructure @ Sun}}{V - v}$

-100 -50 0

U

Dehnen (2000)

0 50 100 [km/s]

axisymmetric

axisymmetric

 $L_{\rm bar}$

Outer Lindblad Resonance

Dehnen (1999)

$\Omega_{\rm bar} = 53 \pm 3 \ \rm km/s/kpc$

Outer Lindblad Resonance

Fast bar?

$$\Omega_{\rm bar} =$$
 53 km/s/kpc

local data

Dehnen (1999) Minchev+(2009),Antoja+(2014), Monari+(2017)

Slow bar? 39 km/s/kpc

bulge-region data

Portail et al. (2017)

Fast bar?

$$\Omega_{\rm bar} =$$
 53 km/s/kpc

local data

Hercules : "slow bar + spirals" ?

Slow bar? 39 km/s/kpc bulge-region data

Similar idea : Antoja+(2009,2011)

(1)bar-only models (2)bar+spiral models

Conclusion first !

Bar only

- O : Fast bar
- X : Slow bar

Slow bar + spiral

- O:slow bar + 4-armed steady spiral
- O:slow bar + 2-armed transient spiral

Nethod

axisymmetric

-12 Gyr

constant star formation

-12 Gyr

-Tform

constant star formation

bar formation

constant star formation

bar formation

test particle simulation

	bar
shape	Dehnen (2000) bar
pattern speed	Ω_b 39, 52 km/s/kpc
Tform	0.5 - 10 Gyr

$$\Omega_{\rm bar} = 39 \pm 3.5 \text{ km/s/kpc}$$

 $\Omega_{\rm bar} = 53 \pm 3 \text{ km/s/kpc}$

Result

(Portail+2017) (Dehnen 1999)

 $\Omega_{\rm bar} = 52$, Tform = 5 Gyr

0

-0.5

-0.25

0.25

 $\Omega_{\rm bar} = 52$, Tform = 5 Gyr

-0.5

-0.25

-0.25 < [Fe/H] < 0.00Gaia 300 0.00 < [Fe/H] < 0.25 -0.50 < [Fe/H] < -0.25 $(-v_{R,\odot}, v_{\phi,\odot}) = (11.10, 240.00) \text{ km s}^ (-v_{R,\odot}, v_{\phi,\odot}) = (11.10, 240.00) \text{ km s}^{-1}$ $(-v_{R,\odot}, v_{\phi,\odot}) = (11.10, 240.00) \text{ km s}^{-1}$

0.25

 $\Omega_{\rm bar} = 52$, Tform = 5 Gyr

-0.5

-0.25

0.25

$\Omega_{\rm bar} = 52$, Tform = 5 Gyr

-0.5

0.25

^{1.4}Bar $Gyr_{\tau} = 0^{\circ}$ $.0 \ \rm kpc$ $_{1.2} \alpha = 0.02$ $\phi = 0^{\circ}$

 $\Omega_{\rm bar} = 52$, Tform = 5 Gyr

(1b) **slow** bar

$\Omega_{\rm bar} = 39$, Tform = 5 Gyr

Conclusion first !

Bar only

- O: Fast bar Naturally explains [Fe/H]-dependence of Hercules stream.
- X : Slow bar No Bimodal structure.

Slow bar + spiral

- O:slow bar + 4-armed steady spiral
- O: slow bar + 2-armed **transient** spiral

Conclusion first !

Bar only

- O: Fast bar Naturally explains [Fe/H]-dependence of Hercules stream.
- X : Slow bar No Bimodal structure.

Slow bar + spiral

- O: slow bar + 4-armed steady spiral
- O: slow bar + 2-armed **transient** spiral

-0.5

-0.25

-0.5

-0.25

- Bimodality is due to spiral.
- [Fe/H]-dependence is sensitive to **Tform** (due to chaotic orbits) → Observed [Fe/H]-dependence is not informative.

-0.5

-0.25

С

[Fe/H]

-0.5

-0.25

-0.5

-0.25

0.25

- Bimodality is due to spiral's lifetime.
- [Fe/H]-dependence is sensitive to **Tform** (due to chaotic orbits) → Observed [Fe/H]-dependence is not informative.

TGAS+RAVE : [Fe/H]-dependence of Hercules

Bar only

- O : Fast bar Naturally explains [Fe/H]-dependence of Hercules.
- X : Slow bar No Bimodal structure.
- Slow bar + spiral
- O : slow bar + steady spiral Bimodality : spiral's inner Lindblad resonance.
- O : slow bar + **transient** spiral Bimodality : due to spiral's lifetime.

Conclusion

[Fe/H]-dependence is NOT informative (chaotic orbits).

Independent measurement for $\Omega_{
m bar}$

Ophiuchus stream

36 **Galactic Latitude [degrees]** 34 32 30 28 26 8 6 5 2 З Galactic Longitude [degrees]

Bernard et al. (2014)

Hattori, Erkal, Sanders (2016)