Variable Stars in the Gaia era classical variables: RRL, T2C, δ Cep, Mira

Martin Groenewegen

Royal Observatory of Belgium/Koninklijke Sterrenwacht van België, Brussels (martin.groenewegen@oma.be)

Overview Talk

- Introduction
 - What and Where ?
- PLZ-relation
 - Galactic Structure
 - Calibration of the Distance Scale
- Hipparcos \Rightarrow HST \Rightarrow GDR1 \Rightarrow ?

Where are they ?

Nice, 25-4-17 - p.3/24

Where are they ?

Classical Variables

- Mira (o Cet)
 1596: David Fabricius
 1638: Johannes Holwarda determined a period
 1662: Johannes Hevelius named it "The Wonderful"
- RR Lyrae

Pickering et al. (1901, ApJ 13), Williamina Fleming "....in which the variation is so great that it is obvious to the most inexperienced observer."

- δ Cep 1784: John Goodricke dicovered it to be variable
- Type-II Cepheids BL Her (1 - 4d) : ? W Vir (4-20d): Eduard Schönfeld 1866 RV Tau (20-70d): Lidiya Tseraskaya 1905 (R Sct 1795 by Edward Pigott (η Aql in 1784))

Galactic Structure

Distance Scale

Riess et al. (2016) $H_0 =$ $73.0 \pm 1.8 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (2.4%)

Local Calibration

"Tension" with 66.9 ± 0.7 km s⁻¹ Mpc⁻¹ from *Planck* + Λ CDM \Rightarrow aim for 1% determination of H_0

PL-relations: RRL

Chaboyer (1999): $M_{\rm V} = (0.23 \pm 0.04)([Fe/H] + 1.6) + (0.46 \pm 0.11)$ Muraveva et al. (2015, ApJ 807) 70 RRL, spectroscopic metallicities, period from OGLE, multi-epoch K from VMC DM = 18.493 + 0.008(Pietrzyński et al. 2013 Nature 495) 8 dEBs $M_{\rm K} = (-2.73 \pm 0.25) \log P + (0.03 \pm 0.07) [Fe/H] + (-1.06 \pm 0.01)$ 5 Local RRL: (-1.25 ± 0.06)

Klein et al. (2014 MN 440): PL-relation in WISE Neeley et al. (2015 ApJ 808): PL-relation in [3.6], [4.5]

PL-relations: CEP

Bhardwaj et al. (2016, MNRAS 457)

Issues: Non-linear ? (in BV; Wesenheit, NIR-MIR not) Metallicity dependent ? (small, certainly in NIR-MIR)

PL-relations: CEP

$\textbf{Hipparcos} \Rightarrow \textbf{HST} \Rightarrow \textbf{GDR1}$

Hipparcos ($\sigma_{\pi}/\pi \lesssim 0.16$):

1 RR Lyrae, 2 Type-II, 10 Classical Cepheids, 8 Miras

RR Lyrae – T2C: Benedict et al. (2011 AJ 142)

Name	Туре	$\pi \pm \sigma_{\pi}$	$\pi \pm \sigma_{\pi}$	$\pi \pm \sigma_{\pi}$	
		(HST)	(Hipparcos)	(GDR1)	
RR Lyr	RRab	$\textbf{3.77}\pm\textbf{0.13}$	$\textbf{3.46} \pm \textbf{0.64}$		
UV Oct	RRab	1.71 ± 0.10	$\textbf{2.44} \pm \textbf{0.81}$		
XZ Cyg	RRab	1.67 ± 0.17	$\textbf{2.29} \pm \textbf{0.84}$		
SU Dra	RRab	$\textbf{1.42} \pm \textbf{0.16}$	0.20 ± 1.13		
RZ Cep	RRc	$\textbf{2.54} \pm \textbf{0.19}$	$\textbf{0.59} \pm \textbf{1.48}$		
VY Pyx	BL Her	$\textbf{6.44} \pm \textbf{0.23}$	5.01 ± 0.44	$\textbf{3.85}\pm\textbf{0.28}$	
κ Pav	W Vir	5.57 ± 0.28	6.52 ± 0.77		
KT Com	W Vir		5.50 ± 0.73	$\textbf{4.16} \pm \textbf{0.66}$	
RRab: 5782 GCVS, 217 GDR1, $\sigma_{\pi}/\pi \lesssim 0.16$: 9					
CW: 271 GCVS, 44 GDR1, $\sigma_{\pi}/\pi \lesssim 0.16$: 2					

$\textbf{Hipparcos} \Rightarrow \textbf{HST} \Rightarrow \textbf{GDR1}$

Benedict et al. (2007 AJ 133)						
Riess et al. (2014, ApJ 785)						
Casertano et al. (2016, ApJ 825)						
Name	$\pi\pm\sigma_\pi$	$\pi\pm\sigma_{\pi}$	$\pi \pm \sigma_{\pi}$			
	(HST)	(Hipparcos)	GDR1			
β Dor	3.14 ± 0.16	3.64 ± 0.28				
δ Cep	$\textbf{3.66} \pm \textbf{0.15}$	3.81 ± 0.20				
FF Aql	$\textbf{2.81} \pm \textbf{0.18}$	2.05 ± 0.34	1.64 ± 0.89			
l Car	$\textbf{2.01} \pm \textbf{0.20}$	2.06 ± 0.27				
RT Aur	$\textbf{2.40} \pm \textbf{0.19}$	-0.23 ± 1.01				
T Vul	$\textbf{1.90} \pm \textbf{0.23}$	2.31 ± 0.29				
Y Sgr	$\textbf{2.13} \pm \textbf{0.29}$	3.73 ± 0.32				
X Sgr	$\textbf{3.00} \pm \textbf{0.18}$	3.39 ± 0.21				
ζ Gem	$\textbf{2.78} \pm \textbf{0.18}$	2.71 ± 0.17				
Ŵ Sgr	$\textbf{2.28} \pm \textbf{0.20}$	2.59 ± 0.75				
SS ČMa	$\textbf{0.348} \pm \textbf{0.038}$		0.69 ± 0.23			
SY Aur	$\textbf{0.428} \pm \textbf{0.054}$		0.69 ± 0.25			
DCEP: 632 GCVS, 289 GDR1, $\sigma_{\pi}/\pi \lesssim 0.16$: 1						

(CK Cam: 1.56 ± 0.25 mas)

Nice, 25-4-17 - p.13/24

Hipparcos \Rightarrow **HST** \Rightarrow **GDR1**

Whitelock et al. (2008 MNRAS 386) $10^{0.2\alpha} = \pi \cdot 10^{-0.2(\beta \log P + K_0)} \sim 180$: $M_{\rm K} = -3.51 \log P + 1.20$ 500*d* Mira $M_{\rm K} = -8.3$; 50*d* Cepheid $M_{\rm K} = -7.9$

M + SRa+SRb: 10491 GCVS, 730 GDR1, $\sigma_{\pi}/\pi \lesssim 0.16$: 1 V375 And (2.91 ± 0.46 mas)

GDR1: Cepheids

Casertano et al. (2017, A&A 599) 212 Cep from van Leeuwen et al. (2007), with VIJK $m_{\rm H} = m_{160} - 0.3861(m_{555} - m_{814})$ $M_{\rm H} = -2.77 - 3.26 \log P$

"Our analysis suggests that the parallaxes of 9 Cepheids brighter than G = 6 may be systematically underestimated; trigonometric parallaxes measured with the HST FGS for three of these objects confirm this trend."

GDR1: RRL

GDR1: Miras

Deason et al. (2017 MNRAS 467) Select LPVs/Miras based on 2MASS/WISE colours and $A = \sqrt{N} \cdot \sigma_{\rm F}/F$ structure MC

Gaia Data Release 1

The Cepheid and RR Lyrae star pipeline and its application to the south ecliptic pole region*

G. Clementini^{1,**}, V. Ripepi², S. Leccia², N. Mowlavi³, I. Lecoeur-Taibi⁴, M. Marconi², L. Szabados⁵, L. Eyer³,
L. P. Guy⁴, L. Rimoldini⁴, G. Jevardat de Fombelle⁶, B. Holl⁴, G. Busso⁷, J. Charnas⁴, J. Cuypers⁸, F. De Angeli⁷,
J. De Ridder⁹, J. Debosscher⁹, D. W. Evans⁷, P. Klagyivik⁵, I. Musella², K. Nienartowicz⁶, D. Ordóñez⁴,
S. Regibo⁹, M. Riello⁷, L. M. Sarro¹⁰, and M. Süveges⁴

Clementini et al. (2016 A&A 595)

RRL: 2595 (343 New); DCEP: 558 (26); AC: 16 (8); T2C: 25 (9)

GDR2+

- σ_{π} = 50 microarcsec in DR2 (factor 5-6 better than TGAS solution).
- Time series of the G band, and the time series of integrated BP and RP bands.
 Goal: all-sky release and characterisation of RRL (20+ epochs)
- 2 000-8 000 Cepheids (Eyer&Cuypers 2000), 9 000 (Windmark et al. 2011)
 70 000 RR Lyrae stars (Eyer&Cuypers 2000)
 200 000 LPVs (Eyer&Cuypers 2000)
- $T_{\rm eff}$, metallicity (RVS, spectrophotometry)

GDR2+

 Cepheids/RRL in Clusters
 δ Cep, ζ Gem
 (Majaess et al., 2012 ApJ 747, ApJ 748)

Baade-Wesselink method

d [pc] = 9.305 ΔR [R_{\odot}] / $\Delta \theta$ [mas]

p-factor (Pierre Kervella on Friday) Calibrating surface-brightness relations

GDR2+: Stellar Evolution

Barium stars, S-stars, CEMP (posters Ana Escorza, Shreeya Shetye, Sophie Van Eck, Alain Jorissen) AN CEP, peculiar W Vir, RV Tau (post-AGB)

Kamath et al. (2016) Groenewegen & Jurkovic (2017) 30 of 51 RV Tau have excess emission. Surprise: 10% of all W Vir also have IR excess. Luminosities of 200 - 800 L $_{\odot}$ dusty post-RGB objects

- GDR1 has indicated the potential in terms of Structure and Distance Scale
- Bright limit: linking Hipparcos/HST to Gaia

THE END

In Memoriam

Jan Cuypers (1956-2017)

Nice, 25-4-17 - p.24/24