Age-Abundance Trends in the Solar Neighborhood

Diane Feuillet MPIA April 25, 2017 IAUS 330 Nice, France

And the stitute for Astronomie to Base of the stitute for Astronom to Base of the stitute for Astronom

Galactic Chemical Evolution

Alpha elements Fe type elements

How do we interpret chemical abundances?

History of the Milky Way

How do we interpret chemical abundances?

Need to describe the full disk

Uniform star formation rate??

APOGEE

Need to describe the full disk

Uniform star formation rate??

APOGEE

Stellar Ages

Stellar Ages

Ages cannot be directly measured

Empirical

- Gyrochronology
- Chromospheric activity
- CN abundances

Model-dependent

- Isochrone model matching
- Asteroseismic mass
- Mass-age relation

Requirements for APOGEE stars

- Works for giant stars
- Applicable to a large sample (> 100,000)
- Preserves ability to examine detailed chemical abundance patterns with time
- Small uncertainties

Stellar Ages

Ages cannot be directly measured

Empirical

- Gyrochronology
- Chromospheric activity
- CN abundances

Model-dependent

- Isochrone model matching
- Asteroseismic mass
- Mass-age relation

Feuillet+ 2016

Local Sample

Parallax measurements

- 1m+APOGEE
- 700 stars within 400 pc of the sun
- Hipparcos parallax uncertainty < 10 %
- (J-K) > 0.5, M_H > 2
- [Fe/H], Teff, log(g), M_v
 Test sample for
 Gaia+APOGEE

Bayesian Likelihood

$$f(\tau,\zeta) \propto \psi(\tau)\phi(\zeta) \int L(\tau,\zeta,m) S(\tau,\zeta,m)\xi(m) \,\mathrm{d}m.$$

 $\psi(\tau)$ Assume flat SFH in age $\xi(m)$ Chabrier IMF $\phi(\zeta)$ MDF flat within σ Input parameters: χ_{g}

[Fe/H], T_{eff} , M_V , log gTake mean of age PDF

Selection function

Hierarchical Modeling of SFH

Gaussian + uniform SFH

$$\psi(\tau|\mu,\sigma) = \frac{(1-A)}{\sigma\sqrt{2\pi}} \exp\left(\frac{(\tau-\mu)^2}{2\sigma^2}\right) + A \times C$$

- A outlier fraction
- C normalized constant
- μ mean age
- σ age dispersion
- τ age

Hierarchical Modeling of Local Sample

Model the SFH for stars with similar abundance Results in the mean age of giants currently in the solar neighborhood with the same alpha abundance

Hierarchical Modeling of Local Sample

Feuillet+ in prep

C and N mass dependence

Driven by mass(temperature)dependence of CNO cycle and internal mixing from first dredge-up

Supports methods of Martig+ 2016 Must be tested outside solar neighborhood

Alpha elements

Individual alpha elements agree with average alpha

Consistent with previous work on solar-like stars and local dwarfs

Difference in light and heavy alphas

Alpha elements

Individual alpha elements agree with average alpha

Consistent with previous work on solar-like stars and local dwarfs

Difference in light and heavy alphas

Na and Al

Smiljanic+ 2016 suggest internal mixing in red giant stars enhances Na in massive stars

Al is consistent with results from solar-like stars.

Na is not, perhaps there is some effect of mixing

Mn and Ni

Most theoretical yields predict similar behavior for Mn and Ni

Could be some NLTE effects (see Battistini & Bensby 2015)

Kobayashi+ 2006 solves Mn vs Ni difference with winds

Conclusions

- Hierarchical modeling is a powerful tool for examining age trends for large samples of stars
- Clear relation between C & N and age in the solar neighborhood
- Different behavior of light and heavy alphas
- Gaia will allow for individual ageabundance trends as a function of position through the disk

Questions?

Galactic Archaeology

- ✓ Stars are good tracers of Galactic evolution
- Elemental abundances in stellar atmospheres reflect the composition of the ISM
- ✓ The composition of the ISM changes with time
- ✓ IN GENERAL... the ISM is enriched with time → [Fe/H] increases
- Different elements are enriched differently

