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Models to compare to surveys

®Our knowledge of how baryons were accreted by galaxies
such as the Milky Way is limited

®*So how can we make best use of large surveys to discover
the distribution of dark matter in the Galaxy?

®*We have to use stars as tracer particles

®* Must assume statistical equilibrium

®Exploit Jeans theorem and make DFs analytic functions of
three constants of orbital motion, actions J.



® Density models

* Bulge
e (Gas disc

® DF based models

e Dark halo
e Thin and thick disc

* Stellar halo

2MASS Covers the Sky

(IMASSY  The Two Micron All Sky
W Infrared Processing and Analysis Center/Caltech & Univ. of Massachusetts
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Iterative scheme

® [nitial estimate for potential ®
eEvaluate actions J(x,v) using @, and Stackel Fudge

(Binney 2012,2014)
®* Compute density by integrating over v

pDM(X):f dBVf[J(X:V>]

® Solve Poisson’s equation for new @
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Disc DF

* A quasi-isothermal f(J) for each cohort of coeval stars

e Parameters:

DF=f(J,,J,,L,)=f(J,,J,,L,)f (], ], L,)

.
fol(J,,L,)=—22 [1+tanh (L /L,)]e ©
r TO. X
_vJ, R
foJuL)="—e 2(L,)=Ze

270,



Su&> UNIVERSITY OF

%~ OXFORD

#(3) NFW

_ﬁ2.0 -15 —-1.0 -0.5 0.0 0.5 1.0
log,y 7

DF for the dark halo (Posti et al 2015)
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Impact of Baryons on DM

* In NFW DF there’s an infinite phase-space density of
particles at J=0

e Scattering of DM particles by baryons will reduce
phase-space density of DM

* Reduction will have greatest impact near J=0

« So we modify NFW DF by shifting particles from very
low J to higher J

e f(J) = g(h) fyrw(h) with h(J) and g small at low h
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S(s)

» Full a priori calculation of S(s) needs:
- Full chemodynamical model of the MW disc S(s,t,[Fe/H])

- Know/model exact distribution of stars in age and metallicity in
Solar neighbourhood

» Population synthesis (Schonrich et al 2014) & T.,>4200

K

e Schonrich and Aumer 2017; S(s,T) Is a steep selection

function in ©
e S(S) at fixec

exponential

Istance and age

metallicity falls off approximately
y with scale 0.12 kpc at s > 0.2 kpc
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Including the selection function

e Selection function for TGAS Is biased

— Younger stars are more likely to be seen so
kKinematics appear cooler that realy are

 Our models have age but not metallicity
* \WWe can add metallicity

 Then we can compute likelihoods based of
model based on selection function
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AM (Action-based Galaxy Modelling Architecture) library

* Low-level interfaces and generic routines, not particularly tied to stellar dynamics:
various mathematical tasks, coordinate systems, unit conversion, input/output of
particle collections and configuration data, and other utilities.

» Gravitational potential and density interface: the hierarchy of classes representing
density and potential models, including two very general and powerful approximations
of any user-defined profile, and associated utility functions.

* Routines for numerical computation of orbits and their classification.

» Action/angle interface: classes and routines for conversion between position/velocity
and action/angle variables.

« Distribution functions expressed in terms of actions.

» Galaxy modelling framework: computation of moments of distribution functions,
interface for creating gravitationally self-consistent multicomponent galaxy models,
construction of N-body models and mock data catalogues.

« Data handling interface, selection functions, etc.
» The code can be downloaded from https://github.com/GalacticDynamics-Oxford/Agama
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Conclusions

® Self-consistent modelling is a powerful and flexible tool
for discovering the structure of the Milky Way

® [t can use the rich data becoming available from large
surveys to test our models of galactic structure

®* Combing TGAS with spectrascopic surveys such as RAVE
and LAMOST can provide improved matches of model to
surveys
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