

STELLAR CLUSTERS in the GAIA era

ANGELA BRAGAGLIA (INAF-OA BOLOGNA)

OUTLINE

- The promise of Gaia for clusters very short
 Clusters in DR1 verification, science
 Complementing Gaia with (mostly) ground-based data
- DR2 and later (implicit)

THE PROMISE of Gaia for CLUSTERS

Gaia provides: accurate, precise position, distance, proper motion, (and more limited radial velocities, chemistry)

A very incomplete wish list:

- How do clusters form
- How do clusters populate the field
- Trace stars/streams back to original cluster/association
- Use clusters to test stellar models (to very low mass)
- Use open clusters to test disk properties
- Variability (e.g. Cepheids, RR Lyr's, binaries)
- etc

you name your favourite "cluster science" field : Gaia will be there...

Gaia's FIRST SKY MAP

HOW MANY CLUSTERS

(rule-of-thumbs) accuracy on π , PM : V≈15 star (also RV available) 1% @ 1 kpc 5% @ 5 kpc

Number $D_{\odot} < 1 \text{ kpc}$ $D_{\odot} < 5 \text{ kpc}$ Globular clusters (157)none15Open clusters (3000)370~2630

but this – surely for OCs – is only the tip of the iceberg

HOW MANY OPEN CLUSTERS

25 Apr 2017

M4 – DR1

M4 in DR1 : POSITIONS & Gmag

GLOBULAR CLUSTERS IN DR1/TGAS?

Harris 1996 and web updates : 157 MW GCs

Positions in DR1 : OK PM, π (TGAS) : ?

exercise done by Watkins & van der Marel (arXiv:1611.03170) :

- take all MW GCs, take 2×tidal radius & search TGAS : 4268 TGAS stars in 142 GCs
- check magnitude (tip RGB for each GC and fainter) :
- keep only if PM, π agree with previous data
- add RV (literature)
- check if they lie on evolutionary sequences in CMD :
- check with field stars model

967 stars in 30 GCs (<10.2 kpc)

64 stars in 15 GCs

59 stars in 15 GCs

48 stars in 11 GCs

20 stars in 5 GCs

Pancino+2017 : simulations to reproduce typical

GCs as observed by *Gaia* c=1, c=2.5 D_☉=5 (10% of MW GCs), 10 (50%), 15 (70%) kpc background: "halo", "disk", "bulge" "Only the latest few DRs are expected to produce a real breakthrough in GC research"

Pancino+2017 : simulations to reproduce typical

GCs as observed by *Gaia* c=1, c=2.5 D_☉=5 (10% of MW GCs), 10 (50%), 15 (70%) kpc background: "halo", "disk", "bulge" "Only the latest few DRs are expected to produce a real breakthrough in GC research"

Pancino+2017 : simulations to reproduce typical

GCs as observed by *Gaia* c=1, c=2.5 D_☉=5 (10% of MW GCs), 10 (50%), 15 (70%) kpc background: "halo", "disk", "bulge" "Only the latest few DRs are expected to produce a real breakthrough in GC research"

Pancino+2017

- > 10^3 - 10^4 stars/GC : astrometric performance not touched by crowding
- \succ but worst cases only ~100 clean stars
- limiting factor : background crowding (not cluster crowding)
- > systemic PM, π to <1% or better up to 15kpc (i.e. 70% of MW GCs) e.g. dynamical relaxation from PMs to 5kpc (10% of GCs)
- > 1% distance \rightarrow 10% absolute age (and relative ages of subpops)
- > nearby GCs : velocities to a few km/s (complement from ground)
- internal kynematics of unprecedented precision
 e.g. masses to 10% to 15kpc ; kin differences in subpops to 10 kpc
- > orbits from PMs, π , position, RV e.g. extra-tidal stars, tidal tails
- bright stars (V<17-18) : 1 mmag precision in photometry (also at centers)
- > all stars have 1-3% error on absolute photometry

VALIDATION: OPEN CLUSTERS IN TGAS

Gaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects *

Gaia Collaboration, F. van Leeuwen¹, A. Vallenari², C. Jordi³, L. Lindegren⁴, U. Bastian⁵, T. Prusti⁶, J.H.J. de Bruijne⁶, A.G.A. Brown⁷, C. Babusiaux⁸, C.A.L. Bailer-Jones⁹, M. Biermann⁵, D.W. Evans¹, L. Eyer¹⁰, F. Jansen¹¹, S.A. Klioner¹², U. Lammers¹³, X. Luri³, F. Mignard¹⁴, C. Panem¹⁵, D. Pourbaix^{16, 17}, S. Randich¹⁸, P. Sartoretti⁸, H.I. Siddiqui¹⁹, C. Soubiran²⁰, V. Valette¹⁵, N.A. Walton¹, C. Aerts^{21, 22}, F. Arenou⁸, M. Cropper²³, R. Drimmel²⁴, E. Høg²⁵, D. Katz⁸, M.G. Lattanzi²⁴, W. O'Mullane¹³, E.K. Grebel⁵, A.D. Holland²⁶, C. Huc¹⁵, X. Passot¹⁵, M. Perryman⁶, L. Bramante²⁷, C. Cacciari²⁸, J. Castañeda³, L. Chaoul¹⁵, N. Cheek²⁹, F. De Angeli¹, C. Fabricius³, R. Guerra¹³, J. Hernández¹³, A. Jean-Antoine-Piccolo¹⁵, E. Masana³, R. Messineo²⁷, N. Mowlavi¹⁰, K. Nienartowicz³⁰, D. Ordóñez-Blanco³⁰, P. Panuzzo⁸, J. Portell³, P.J. Richards³¹, M. Riello¹, G.M. Seabroke²³, P. _ 20 Tanga¹⁴, F. Thévenin¹⁴, J. Torra³, S.G. Els^{32,5}, G. Gracia-Abril^{32,3}, G. Comoretto¹⁹, M. Garcia-Reinaldos¹³, T. Lock¹³, E. Mercier^{32, 5}, M. Altmann^{5, 33}, R. Andrae⁹, T.L. Astraatmadja⁹, I. Bellas-Velidis³⁴, K. Benson²³, J. Mar Berthier³⁵, R. Blomme³⁶, G. Busso¹, B. Carry^{14, 35}, A. Cellino²⁴, G. Clementini²⁸, S. Cowell¹, O. Creevey^{14, 37}, J. Cuypers³⁶, M. Davidson³⁸, J. De Ridder²¹, A. de Torres³⁹, L. Delchambre⁴⁰, A. Dell'Oro¹⁸, C. Ducourant²⁰, Y. Frémat³⁶, M. García-Torres⁴¹, E. Gosset^{40, 17}, J.-L. Halbwachs⁴², N.C. Hambly³⁸, D.L. Harrison^{1,43}, M. Hauser⁵, \mathbf{O} D. Hestroffer³⁵, S.T. Hodgkin¹, H.E. Huckle²³, A. Hutton⁴⁴, G. Jasniewicz⁴⁵, S. Jordan⁵, M. Kontizas⁴⁶, A.J. Korn⁴⁷, A.C. Lanzafame^{48, 49}, M. Manteiga⁵⁰, A. Moitinho⁵¹, K. Muinonen^{52, 53}, J. Osinde⁵⁴, E. Pancino^{18, 55}, T. R Pauwels³⁶, J.-M. Petit⁵⁶, A. Recio-Blanco¹⁴, A.C. Robin⁵⁶, L.M. Sarro⁵⁷, C. Siopis¹⁶, M. Smith²³, K.W. Smith⁹, A. 5 Sozzetti²⁴, W. Thuillot³⁵, W. van Reeven⁴⁴, Y. Viala⁸, U. Abbas²⁴, A. Abreu Aramburu⁵⁸, S. Accart⁵⁹, J.J. Aguado⁵⁷, P.M. Allan³¹, W. Allasia⁶⁰, G. Altavilla²⁸, M.A. Álvarez⁵⁰, J. Alves⁶¹, R.I. Anderson^{62, 10}, A.H. astro-ph Andrei^{63, 64, 33}, E. Anglada Varela^{54, 29}, E. Antiche³, T. Antoja⁶, S. Antón^{65, 66}, B. Arcay⁵⁰, N. Bach⁴⁴, S.G. Baker²³, L. Balaguer-Núñez³, C. Barache³³, C. Barata⁵¹, A. Barbier⁵⁹, F. Barblan¹⁰, D. Barrado y Navascués⁶⁷, M. Barros⁵¹, M.A. Barstow⁶⁸, U. Becciani⁴⁹, M. Bellazzini²⁸, A. Bello García⁶⁹, V. Belokurov¹, P. Bendjoya¹⁴, A. Berihuete⁷⁰, L. Bianchi⁶⁰, O. Bienaymé⁴², F. Billebaud²⁰, N. Blagorodnova¹, S. Blanco-Cuaresma^{10,20}, T. Boch⁴², A. Bombrun³⁹, R. Borrachero³, S. Bouquillon³³, G. Bourda²⁰, H. Bouy⁶⁷, A. Bragaglia²⁸, M.A. Breddels⁷¹, N.

> and many authors more (2017, A&A, 601, A19) IAUS 330 - The Gaia Sky (Nice, FR)

Name	Fe/H	E(B-V)	log(age)	600			
Hyades	0.15 ± 0.004	0.00	8.90	54 S 33 S			
Coma Ber	0.00 ± 0.08	0.00	8.75				
Praesepe	0.16 ± 0.004	0.01	8.90	→ NG 111-5232			
Pleiades	-0.01 ± 0.05	0.04	8.08				
α Per	0.14 ± 0.11	0.09	7.55				
IC2391	-0.01 ± 0.03	0.05	7.55				
IC2606	-0.02 ± 0.02	0.03	7.88	→ BB 302 La Participation - Anna Participation - A			
Blanco 1	0.03 ± 0.07	0.01	8.32	• ¹			
NGC2451A	-0.08	0.00	7.76				
NGC6475	0.02 ± 0.02	0.21	8.22				
NGC7092	0.00	0.01	8.57				
NGC2516	$+0.05 \pm 0.11$	0.07	8.08				
NGC2232	0.11	0.03	7.49	0			
IC4665	-0.03 ± 0.04	0.17	7.63	cluster			
NGC6633	-0.08 ± 0.12	0.17	8.76				
Coll140	0.01 ± 0.04	0.05	7.57				
NGC2422	0.09 ± 0.03	0.10	8.12	N(member)=16-152 (median \sim 50)			
NGC3532	0.00 ± 0.07	0.04	8.45	$Rmax=2-17 deg (median \sim 2.7 deg)$			
NGC2547	-0.14 ± 0.10	0.04	7.70	D = 47.440 pc			
$D_{-} \leq 30$	$00nc$ $D_{z} =$	300_500	nc	$D_{\odot} - 47 - 440 \text{ pc}$			
	$\rm phc \ D^{0-}$	500-500	PC	van Leeuwen & Gaia collab. 2017			

Praesepe

79 members, $<\pi>=5.47\pm0.05$ mas, $D_{\odot}=183$ pc, stars to ~15pc

Hyades 103 members, $<\pi>=21.39\pm0.21$ mas, D_{\odot}=46.75±0.46 pc, stars at ~15pc Hyades Hyades -0.5 0.0 <u>.</u> • 0.5 1.0 0 1.5 2.0 2.5 3.0 3.5 abs (Genev.) 4.0 Θ Dec 4.5 00 > 5.0 0 5.5 0 5pc c 6.0 6.5 7.0 •10pc 0 7.5 8.0 ^{8.5} Vabs vs V-B: very narrow sequence 15pc V1-B TGAS HIP

25 Apr 2017

Gaia DR1 and CLUSTERS @IAUS 330

- Talk Eleonora Zari Stellar content of the Orion OB association
- C09 Delphine Russeil OB stars towards NGC 6357 and NGC 6334
- **C11 Bertrand Goldman -** What we learn from TGAS about the moving groups of the Solar neighbourhood
- C16 Joshi Yogesh Open star clusters and Galactic structure
- C20 Lin Chien-Cheng Open cluster dynamics via fundamental plane
- **C26 David Montes -** Revisiting membership of late-type stars to stellar kinematic groups using Gaia-DR1
- C43 Teixeira Ramachrisna Revisiting TW Hydrae association in light of Gaia-DR1
- C46 Velcovsky Jaroslav Complex study of the open cluster NGC 2281
- C50 Yen Steffi Reanalysis of 24 Nearby Open Clusters using Gaia Data
- D06 Guo Difeng The Sco OB2 Association in Gaia Era

Gaia 1 (behind Sirius) : a globular cluster?

The first new stellar cluster discovered on DR1 data Koposov+2017 (arXiv:1702.01122)

D_☉=4.6 ± 0.2 kpc age=6.3 Gyr, [Fe/H]=-0.7 (PARSEC) R_h=6.5'±0.4' (=9pc) Mv=-5.1

Gaia, 2MASS, WISE, PS1

We conclude that Gaia possesses powerful and unique capabilities for satellite detection thanks to its unrivaled angular resolution and highly efficient object classification.

Gaia 1 (behind Sirius) : an open cluster?

confirmed spectroscopically with HERMES & AAOmega Simpson+2017 (arXiv:1703.03823)

25 Apr 2017

IAUS 330 - The Gaia Sky (Nice, FR)

Gaia & HST : PMs for NGC2419

Massari+2017 : the GC NGC2419 (Mv=-9.42, Rgc=90 kpc) (μα cos(δ), μδ) = (-0.17 ± 0.26,-0.49 ± 0.17) mas yr⁻¹ First epoch : HST, second epoch Gaia DR1 (~12.5 yr baseline)

TGAS: π and PM for 5 GCs

Watkins & van der Marel, subm.

Use TGAS data only

not a cluster

È\$0436-2

CMDs + Gaia DR1 TO (DIS)PROVE OCs?

8

10

12

16

18

> 14

Piatti+2016, 2017 :

a) 7 candidate OCs near dissolution <u>Rup 3</u>, 9, 37, 74, 150; ESO324-15, <u>436-2</u> **but the 2 in Gaia DR1 are not clusters?** $(\neq \pi \text{'s}, \neq \text{PMs})$

COMPLEMENTING Gaia

SPECTROSCOPY, e.g. :

SDSS, LAMOST (low-res) RAVE (intermediate-res, not much on clusters)

to cite only high-res on-going: APOGEE (good for IR) Gaia-ESO ← GALAH future: WEAVE MOONS

4MOST

PHOTOMETRY, e.g. : SDSS, 2MASS ESO public surveys @VISTA, @VST Pan-STARRS1

HST (crowded centers, PM, π)

JWST, ELTs

LSST (Gaia's deep complement)

Gaia-ESO SURVEY

Credits: ESA/Gaia-CC BY-SA 3.0 IGO

Gaia-ESO top-level scientific goal is delivery and analysis of high-quality spectroscopy for a fair sample of all Galactic stellar populations. http://www.gaia-eso.org

A Galactic view from the observation deck

Credits: ESO

Gaia-ESO SURVEY

Stellar orbits, star formation history, origin of the elements, Galaxy assembly,.... dark matter, cosmological initial conditions, fundamental physics, solar system(s)

Gilmore, Randich, et al. 2012, The Messenger 147, 25 : "The Gaia-ESO Public Spectroscopic Survey"

Gaia-ESO SURVEY: OPEN CLUSTERS

 D_{\odot} (in pc) vs age (in Myr) 7000 6000 5000 ٠ 4000 age 3000 • • 0 2000 1000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 0 Dsun

- **Open clusters & SFRs**
- cluster formation and evolution
- Galaxy chemodynamics
- stellar evolution

age/metallicity/mass/Rgc range for OCs well covered

Gaia-ESO SURVEY: OPEN CLUSTERS

IAUS 330 - The Gaia Sky (Nice, FR)

Gaia-ESO SURVEY and TGAS

van Leeuwen & Gaia collaboration 2017 :

DR1 verification paper on open clusters

Gaia-ESO spectroscopy:

1	Hyades	(too sparse	e)
2	Coma Ber	(dec +26)	
3	Praesepe	(TBA)	
4	Pleaides	(dec +24)	
5	<i>Q</i> Per	(dec +48)	
6	IC2391		
7	IC2602		
8	Blanco 1		
9	NGC2451A		
10	NGC6475	(TBA)	
11	NGC7092	(dec +48)	
12	NGC2516	· · ·	
13	NGC2232		
14	IC4665		
15	NGC6633		
16	Cr 140		
17	NGC2422		
18	NGC3532		
19	NGC2547		32

Gaia-ESO SURVEY: KINEMATICS

8.0

8.5

9.0

Gaia-ESO SURVEY: MW DISK

Gaia-ESO SURVEY: STELLAR MODELS

Gaia-ESO SURVEY: GLOBULAR CLUSTERS

Pancino+2017

APOGEE

Tang+2017: two populations in the bulge GC NGC6553

Souto+2016: RGB stars in NGC2420

GALAH

6

8

 $K_S 10$

12

14

16

Martell+2016 : as part of pilot/calib survey 6 GCs (NGC104, NGC1851, NGC362, NGC288, ωCen, NGC7099) and M67

WEAVE

WEAVE = WHT Enhanced Area Velocity Explorer

@ 4.2m WHT, La Palma
2° diameter
960 (plate A)/940 (plate B) fibers
1.3" fiber diameter + mIFUs, LIFUs
LR (R~5000) : 366-959 nm
HR (R~20000) : 404-465/473-545 + 595-685nm

Has dedicated survey for open clusters and for star forming regions Will observe globulars

THIS IS NOT A SUMMARY

Already results on clusters, considering Gaia and complementing surveys

Let's get more from Gaia DR1

Let's get ready for Gaia DR2

THANK YOU

