Wide Binaries in Gaia

Jeff J. Andrews University of Crete / FORTH

IAU Symposium 330: Astrometry and Astrophysics in the Gaia Sky Nice, France

Julio Chanamé (PUC) Marcel Agüeros (Columbia)

Sirius A/B System

Image Credit: Michael Rulison

Proper Motions from Photometric Plates Laser Scanning Willem Luyten Microdensitometer

IAU Colloquia 5: Coordination of Observing Techniques of Visual Double Stars Nice, France September 1969

Wide Binary Science

Galactic Structure Wide binaries are fragile, sensitive to structure

Stellar Dynamics

Triple system dynamics

Stellar Astrophysics

Components are co-eval, independent, same metallicity

Initial-Final Mass Relation

Initial-Final Mass Relation

Initial-Final Mass Relation

Wide Binaries using TGAS

Andrews et al. ArXiv: 1704.07829

Method - Bayesian Priors

Random $\propto \rho(\hat{x})^2$ alignment prior

Density in position and proper motion phase space

Binary prior $\propto f_{\rm bin} \rho(\hat{x})$ Binary fraction

Andrews et al. ArXiv: 1704.07829

Method - Random Alignment Likelihood

Probability = density x area

The area of an infinitesimally thin annulus is $2\pi r dr$

Position

Proper Motion

Method - Binary Likelihood

Parallax (mas)

Proper Motion (mas/yr)

Log s (AU)

A Catalog of Only Random Alignments

Shift the catalog by:

- +1° in declination
- +3 mas/yr in right ascension
- +3 mas/yr in declination

Example from Lepine & Bongiorno (2007)

A Catalog of Only Random Alignments

- Shift the catalog by:
 - +1° in declination
- +3 mas/yr in right ascension
 - +3 mas/yr in declination

Example from Lepine & Bongiorno (2007) Results

Only Random Alignments

Results

Only Random Alignments Catalog of TGAS Wide Binaries **10**⁶ **10**⁶ Projected Separation (AU) Projected Separation (AU) 1 pc 1 pc **10**⁵ **10**⁵ $\theta = 1^{\circ}$ $\theta = 1^{\circ}$ $\theta = 10'$ $\theta = 10'$ 104 104 $\theta = 1$ **10**³ **10**³ $\theta = 10"$ $\theta = 10$ " **10**² 10² $\theta = 2$ " $\theta = 2$ " 100 1000 10 10 100 1000 Distance (pc) Distance (pc)

Results

6196 Wide Binaries For pairs with projected separations <4x10⁴ AU, contamination is roughly 5%

RAVE Radial Velocity Test

Triple Systems

"more than 25% of [common proper motion] components are spectroscopic or astrometric binaries themselves." Makarov et al. (2008)

Chanamé et al. (in prep)

Wide Binary Metallicity Comparison

Decidera et al. (2006)

RAVE Metallicity Comparison

Andrews et al. (in prep)

RAVE Chemical Abundances

Andrews et al. (in prep)

Conclusions

- We have found over 4000 wide binaries with separations <4x10⁴ AU and contamination < 5%.
- There is lots of potential science:
 - stellar triples
 - stellar abundances
 - galactic structure
- We will likely find 2 orders of magnitude more wide binaries in future Gaia catalogs
- N² scaling makes this problem very challenging in DR2

See details on the ArXiv: 1704.07829

Extra Slides

Detecting Orbital Velocities

Cluster Dissolution

Model 1

Kouwenhoven et al. (2010)

Cluster Dissolution

Semi-major axis (AU)

The Galactic Potential

Binaries become unbound due to passing stars and the Galactic tide

Log a

Log a

Log a

Jiang & Tremaine (2010)

Orbital Separation Distribution

Region 1 "Small" Separations

Region 2 "Large" Separations

Wide Binary Science

Galactic Structure

Weinberg et al. (1985) - Binary stars dissipate over time Bahcall & Tremaine (1985) - MACHOs cannot be larger than 2 Msun Yoo et al. (2004) - MACHOs cannot be form dark matter in the Milky Way Penarrubia et al. (2016) - Constrain dark matter in nearby ultrafaint galaxies

Stellar Dynamics

Kouwenhoven et al. (2010) - Formed from dissolution of stellar clusters Reipurth & Mikkola (2012) - Formed from dynamical unfolding of stellar triples Andrews et al. (2016) - Constrain Lidov-Kozai mechanism Tokovinin (2017) - Formed from bound, nearby star-forming cores

Stellar Astrophysics

Bonfils et al. (2005) - Calibrate M-dwarf metallicities Garcés et al. (2011) - Calibrate stellar chromospheric ages Andrews et al. (2015) - Constrain the Initial-Final mass relation

Clustered Pairs

Random Alignments - Radial Velocities

Method Test - rNLTT

Open Clusters

We remove 12 open clusters:

- Pleiades
 - Coma Ber
 - Hyades
 - Praesepe
 - a Per
 - IC 2391
 - IC 2602
 - Blanco I
 - NGC 2451 NGC 6475 NGC 7092

NGC 2516

10

0

0

15

Parallax (mas)

10

5

25

30

20

40

Cross-Matching with LAMOST - Radial Velocities

Cross-Matching with LAMOST - Metallicities

Gaia for Planets

Image Credit: ESA Gaia

Detecting Orbital Velocities - Prediction

