The Galactic Disk and Halo in the Gaia Era

Carlos Allende Prieto Instituto de Astrofísica de Canarias

Introduction

- Hierarchical galaxy formation
- Galaxy disks
- Double disks seen in many disk galaxies observed edge-on (image credit: 2MASS, shown by Bournaud et al. 2009)
- Also present in the Milky Way

Ages and abundances

- Thick disk stars tend to be significantly older and more metal-poor than thin disk stars
- Seen in individual local turn-off stars
- Also seen in the turn-off colors of in-situ stars

Reddy et al. 2006

Kinematics and abundances

The thick disks rotation speed

Fuhrmann 1998 Reddy et al. 2006

Vertical velocity dispersion

- A larger vertical to a larger scale-
- The thin disk sta between velocity with a smooth transition
 suggesting the thick disk may have formed thi

Intermediate [α /Fe] stars

Feuillet et al. 2016

New more distant samples

+ Gaia

- SDSS-SEGUE
- RAVE
- APOGEE
- Gaia-ESO
- LAMOST
- GALAH
- ... 4MOST, WEAVE, DESI ...

- Revealing a larger scale-length for the thin disk than the thick disk (Bensby et al. 2011, Cheng et al. 2012, Bovy et al. 2012, Anders et al. 2014)
- This can be in contrast with star counts determinations due to flaring
- Radial abundance gradient clear in the thin disk (a tenth of a dex per kpc) not present in the thick disk stars (seen as a function of age in Nordstrom et al. 2004, in situ in Allende Prieto et al. 2006, now obvious in APOGEE and GES observations)

$[\alpha/Fe]$ as a function of R

Hayden et al. 2015

Correlation between V and [Fe/H]

- Spagna et al. (2010)
- Lee et al. (2011)
- Adibekyan et al. (2013)

Adibekyan et al. 2013

- Recio-Blanco et al. (2014)
- Kordopatis et al.
 (2016)

Gaia DR1 TGAS

- Gaia provides global astrometry and spectrophotometry over the whole sky to 20th mag (1e12 sources), and radial velocities to 16th mag
- DR1 public last september, includes positions for the full sample, but parallaxes and proper motions only for the stars in Tycho-2 (TGAS, 2.5e6 sources)
- Combined with APOGEE,
 3D positions, motions and chemistry for thousands of stars

TGAS-APOGEE

Allende Prieto, Kawata, Cropper 2016

Correlation between V and [Fe/H]

Correlation between V and [Fe/H]

Allende Prieto, Kawata, Cropper 2016

Spread in abundance ratios

- Large abundance spread expected among the first stars formed after one or few supernovae
- Abundance spread reduces as the number of supernovae increases
- A measure of the spread in abundance ratios puts contraints on supernova rates and therefore star formation rates

Cosmic scatter in the disk

Nissen 2015

Cosmic scatter in the disk

Cosmic scatter in the disk

Nissen 2015

Abundance ratio spread over larger scales

Bertran de Lis et al. 2016

APOGEE data

Abundance ratio spread over larger

Models of formation for the thick disk

- Accretion/merger: stars (unlikely), gas
- Secular evolution: orbital migration (unlikely)
- Secular evolution: thick disk forms first (maybe as a thin disk that later fattens up), then thin disk forms after injection of fresh (metal-poor) gas

The formation of the Milky Way halo

- Monolithic collapse (Eggen, Linden-Bell, Sandage 1962) vs. accretion (Early and Zinn 1978)
- Streams and echoes (Yanny et al. 2009; Schlaufman et al. 2012; Grillmair 2017)
- Chemistry of extremely metal-poor stars (Cayrel et al. 2004)

The formation of the Milky Way halo

Accretion seems
 to have left a clear
 signature in the
 outer halo

Bell et al. (2008)

The "double" halo

- SDSS/SEGUE (Carollo et al. 2008)
- Photometry (de Jong et al. 2012)
- Spectroscopy *in situ* (Fernandez-Alvar et al. 2015, 2016)

Inner vs. outer parts (Fernandez-Alvar et al. 2015)

• Inner vs. outer parts (Fernandez-Alvar et al.

• APOGEE data (Hayes et al. 2017; Fernandez-Alvar et al. 2017)

• APOGEE data (Hayes et al. 2017; Fernandez-Alvar et al. 2017)

Summary

- The Milky Way has a double disk wich is distinct in kinematics, age, and chemistry from the thin disk
- There appears to be a connection between the two disks, stars in both that share properties, e.g. have the same age, yet they are clearly in one or other chemical group

Summary II

- We find evidence of both chemical evolution in the halo and accretion at early times
- There is chemical distinction between the inner and outermost parts of the halo at about 20-30 kpc
- The split in [α/Fe] found in the 'local' (inner) halo population is likely related to the metal-weak thick disk
- Gaia DR2 + ground-based spectroscopic surveys are a gigantic step for the study of the disk and the halo