James Binney, University of Oxford

Self-consistent modelling of the Galaxy with Gaia data

Outline

- The Standard Galaxy
- Equilibrium models, Jeans' theorem & AA variables
- Achieving self-consistency
- Recent work on equilibrium models, self-consistent & otherwise
- Flies in the ointment: non-axisymmetry and non-stationarity
- Orbit models: Schwarzschild, M2M and Torus Mapping
- Selection functions: the need for a model history

Where we are headed

- In 2027 a Standard Galaxy (SG) will encapsulate our knowledge of the MW
- Like a Wiki page it will be a work in progress
- When a survey is planned, the SG will predict the survey's contents given its Selection Function (SF)
- When the survey is complete the SG will be updated by maximising the likelihood of the new data with respect to the SG's parameters and priors from earlier surveys
- The SG will describe what's out there, surveys will see just part of it

What's in the SG?

- The distribution in (x,v) of many types of stars
 - K giants, BHB stars, RC stars, A stars, FG stars, K & M dwarfs, white dwarfs
 - Most types subdivided by age, [Fe/H] and [α /Fe] and possibly other abundance ratios
- The distribution in (x,v) of dark matter
- Density of H₁, H₂, perhaps density of H⁺

What lies behind the SG?

- We can't avoid DM but we can't (yet?) directly see it
- We have to infer its distribution from the impact its contribution to $\Phi(x,t)$ has on the distribution in (x,v) of stars & gas
- The distribution of tracers constrains Φ only to the extent that the MW is in statistical equilibrium
- So we have to start from equilibrium models
- We can add non-equilibrium features (spiral arms, warp,..) later
- The natural way to specify an equilibrium is to use Jeans' thm to argue that each component has f(integrals of motion)
 - This result reduces each component to a distribution of stars in a 3d orbit space easier to imagine that 6d phase space!

AA variables

- Since any function g(integrals of motion) is an integral of motion, there are infinitely many possible choices for the arguments of f
 - But there's only one sensible choice
 - To use actions J as our integrals
- Action are special
 - The are the only integrals that can be complemented by canonically conjugate coordinates (angle variables) to make up a complete set of coordinates
 - They are adiabatically invariant, so slow changes in Φ don't cause any change in f
 - makes it easy to compute response to secular change
 - They range from (0,00) or (-00,00) and $(2\pi)^3 d^3J = d^3xd^3v$
 - This fact makes it possible to specify the mass of a component before solving for Φ
 - Their values have immediate physical meaning: In the simplest case:
 - J_r quantifies radial oscillations, Jz quantifies oscillations perp to plane, J_{ϕ} =L_z is angular momentum around symmetry axis
 - They are designed for use with *perturbation theory*

Basic procedure (Binney 2014, Piffl+ 2015)

- Choose f(J) for each component (stars of given age & chemistry; DM)
- Guess $\Phi(x)$ use J(x,v) (e.g. from Staeckel Fudge) to determine $\rho(x)$ by integrating over v on grid in x
- Solve Poisson eq for corresponding $\Phi(x)$ and return to previous step
- Converges in 4-5 iterations
- If you allow E to enter f it's hard to achieve convergence, & if you succeed, convergence will be slow

What's been done so far

- Much work with f(J) for stars but $\rho(x)$ given for DM
 - Binney 2010, 2012, Bovy & Rix 2013, Piffl+ 2014, Trick+ 2016
- Then it's ok to assume parametrised $\Phi(x)$ rather than getting $\Phi(x)$ from Poisson's eq because reasonable to assume that
 - $\Phi_{DM}(x) = \Phi(x) \Phi_*(x)$
- Less challenging computationally because you don't have to do 3d integral at points of (R,z) grid
- Downsides:
 - Can't predict kinematics of DM (direct detection experiments)
 - We expect f(J) of DM to be smooth but $\rho(x)$ to have complex shape due to squeezing by disc (Binney & Wong 2017)
- Cole (last talk) will update on state of the art:
 - ullet Axisymmetric disc & dark halo in self-consistent Φ
 - Strong constraints on $\rho_{\rm DM}({\rm x})$ at ${\rm R}<{\rm R}_{\rm o}$

Binney & Wong 2017

On choice of f(J)

- Simple analytic functions generate excellent approximations to familiar models (Hernquist, NFW,..)
 - Posti+ 2015, Williams+ 2015
 - Models can be flattened, set rotating, whatever you want
- Models of the Galactic disc have been assembled from quasi-isothermal DF (Binney & McMillan 2011)
 - Fit data to extraordinary precision
 - Have demonstrated predictive power (Binney+ 2014)
- Quasi-isothermal DF was used by Bovy & Rix 2013 to model mono-abundance populations, but it cannot fit many such populations
 - We need to generalise
 - Sander & Binney (2015) suggest a direction of travel, but we should explore further

Moving on

- Non-axisymmetry is of fundamental importance for MW
 - Aumer+ 2016a,b, 2017a,b
- The bar seems to extend to R~6 kpc & strongly affects Snhd
 - Perez-Villegas+ 2017, Portail+ 2017
- Spiral structure is $\delta f(x,v,t)$ and should be modelled dynamically
 - Traditionally traced through $\rho(x)$ but it has v-signature too
- $\Phi(x,t)$ can affect DFs in 2 ways
 - Non-resonant perturbation: $J \rightarrow J + \delta J$, $\theta \rightarrow \theta + \delta \theta$
 - Resonant trapping: in restricted region of (x,v) old AA variables must be traded in for new ones
- Big problem: in trapped regions Staeckel Fudge doesn't work
- We are driven back to an orbit model: given (J,θ) we can find (x,v) but not vice versa

Impact of the bar

y/kpc x/kpc y/kpc Binney 2017 x/kpc

Traditional orbit models

- Schwarzschild models (Schwarzschild 1979, Cappellari+ 200, van der Ven 200)
 - Currently provides best models of external ETGs
- M2M models (Syer & Tremaine 1996, De Lorenzi+2007)
 - Currently provides the best models of the bulge/bar (Portail+ 2016)
- In these models
 - Initial conditions for orbit integration play role of integrals of motion
 - Weights of the orbits play role of f(orbit)
- It's relatively straightforward to fit models to data
- Non-axisymmetry & resonant trapping not problematic
- Major differences with f(J) modelling
 - · Very many more parameters in DF and parameters lack evident physical meaning
 - Labels of orbits are complex and lack physical meaning
- I don't like these models because:
 - They are cumbersome: specified by millions of weights with low individual information content
 - Consequently
 - it's hard to compare models
 - It's hard to add components (DM, stars of various ages, chemistries,..)
 - DM is problematic because not directly constrained by data

So back to f(J)!

- For each component we need f(J) for non-trapped orbits
- For each major family of trapped orbits we need a new f(J)
- To evaluate observables we must currently use $x(J,\theta)$ $v(J,\theta)$ provided by Torus Mapper plus perturbation theory
- The good news is that perturbation theory works remarkably well
- It is, however, harder to fit (f, Φ) to data when using x(J, θ) than when using J(x,v) (McMillan & Binney 2013)
- Gaia data will help us determine f(J) for trapped orbits no current knowledge of this

Selection functions

- We need SF to predict contents of survey from a model
 - and hence by evaluating likelihoods to update the model
- The observability of a star depends on L in various bands, so on (age,[Fe/H])
 - Hence DFs must depend on (age,[Fe/H])
 - That is *history* is required to specify *current state*
- Our job now is to pin down current state not guess how MW was assembled
 - but a model history is needed to determine even current state
 - Model history does not need to be true so long as it gives valid f(J,age,[Fe/H])
- Survey SF should be P(l,b,m in bands)
 - stellar models convert to P(s,age,[Fe/H]) which is handy when modelling
- Given importance of (age,[Fe/H]) spectroscopic surveys are essential
 - So we must work largely with intersection of Gaia and APOGEE/RAVE/LAMOST/...
 - Gaia-TGAS SF is complex and involves s,v,... so hard to work with

The ISM

- At low b SF has significant dependence on ISM
- Hence we have to model ISM in parallel with stars
- Quality photometry for zillions of stars with trig parallaxes will be transformative
- Big issue is controlling Fingers of God

Gaussian random field

- Must avoid modelling each line of sight in isolation
- Need to impose continuity on ISM also transverse to los
- Simplest technique: represent ISM as Gaussian random field (Sale & Magorrian 2014)
- Computationally challenging

Conclusions

- The SG is the ultimate fruit of our efforts
- It must be elaborated from an equilibrium axisymmetric model
- f(J) modelling the most promising technology
- On account of SF we need f(J,age,[Fe/H]) & we probably want other chemical coordinates
- So a model history is required even to specify current state
- P-theory provides a promising way of including the bar & spirals
- Sadly, for each family of trapped orbits we need a new f(J)
- A model of the ISM has to be an integral part of the SG
- We have big computational challenges ahead